1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/unittests/IR/InstructionsTest.cpp
Vedant Kumar a8f12623d6 Rename skipDebugInfo -> skipDebugIntrinsics, NFC
This addresses post-commit feedback about the name 'skipDebugInfo' being
misleading. This name could be interpreted as meaning 'a function that
skips instructions with debug locations'.

The new name, 'skipDebugIntrinsics', makes it clear that this function
only skips debug info intrinsics.

Thanks to Adrian Prantl for pointing this out!

llvm-svn: 335667
2018-06-26 21:16:59 +00:00

883 lines
34 KiB
C++

//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock-matchers.h"
#include "gtest/gtest.h"
#include <memory>
namespace llvm {
namespace {
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("InstructionsTests", errs());
return Mod;
}
TEST(InstructionsTest, ReturnInst) {
LLVMContext C;
// test for PR6589
const ReturnInst* r0 = ReturnInst::Create(C);
EXPECT_EQ(r0->getNumOperands(), 0U);
EXPECT_EQ(r0->op_begin(), r0->op_end());
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
const ReturnInst* r1 = ReturnInst::Create(C, One);
EXPECT_EQ(1U, r1->getNumOperands());
User::const_op_iterator b(r1->op_begin());
EXPECT_NE(r1->op_end(), b);
EXPECT_EQ(One, *b);
EXPECT_EQ(One, r1->getOperand(0));
++b;
EXPECT_EQ(r1->op_end(), b);
// clean up
delete r0;
delete r1;
}
// Test fixture that provides a module and a single function within it. Useful
// for tests that need to refer to the function in some way.
class ModuleWithFunctionTest : public testing::Test {
protected:
ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
FArgTypes.push_back(Type::getInt8Ty(Ctx));
FArgTypes.push_back(Type::getInt32Ty(Ctx));
FArgTypes.push_back(Type::getInt64Ty(Ctx));
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
SmallVector<Type *, 3> FArgTypes;
Function *F;
};
TEST_F(ModuleWithFunctionTest, CallInst) {
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
// Make sure iteration over a call's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Call->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST_F(ModuleWithFunctionTest, InvokeInst) {
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
// Make sure iteration over invoke's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Invoke->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST(InstructionsTest, BranchInst) {
LLVMContext C;
// Make a BasicBlocks
BasicBlock* bb0 = BasicBlock::Create(C);
BasicBlock* bb1 = BasicBlock::Create(C);
// Mandatory BranchInst
const BranchInst* b0 = BranchInst::Create(bb0);
EXPECT_TRUE(b0->isUnconditional());
EXPECT_FALSE(b0->isConditional());
EXPECT_EQ(1U, b0->getNumSuccessors());
// check num operands
EXPECT_EQ(1U, b0->getNumOperands());
EXPECT_NE(b0->op_begin(), b0->op_end());
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
// Conditional BranchInst
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
EXPECT_FALSE(b1->isUnconditional());
EXPECT_TRUE(b1->isConditional());
EXPECT_EQ(2U, b1->getNumSuccessors());
// check num operands
EXPECT_EQ(3U, b1->getNumOperands());
User::const_op_iterator b(b1->op_begin());
// check COND
EXPECT_NE(b, b1->op_end());
EXPECT_EQ(One, *b);
EXPECT_EQ(One, b1->getOperand(0));
EXPECT_EQ(One, b1->getCondition());
++b;
// check ELSE
EXPECT_EQ(bb1, *b);
EXPECT_EQ(bb1, b1->getOperand(1));
EXPECT_EQ(bb1, b1->getSuccessor(1));
++b;
// check THEN
EXPECT_EQ(bb0, *b);
EXPECT_EQ(bb0, b1->getOperand(2));
EXPECT_EQ(bb0, b1->getSuccessor(0));
++b;
EXPECT_EQ(b1->op_end(), b);
// clean up
delete b0;
delete b1;
delete bb0;
delete bb1;
}
TEST(InstructionsTest, CastInst) {
LLVMContext C;
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int16Ty = Type::getInt16Ty(C);
Type *Int32Ty = Type::getInt32Ty(C);
Type *Int64Ty = Type::getInt64Ty(C);
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
Type *X86MMXTy = Type::getX86_MMXTy(C);
Type *HalfTy = Type::getHalfTy(C);
Type *FloatTy = Type::getFloatTy(C);
Type *DoubleTy = Type::getDoubleTy(C);
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
const Constant* c8 = Constant::getNullValue(V8x8Ty);
const Constant* c64 = Constant::getNullValue(V8x64Ty);
const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
V2Int32PtrAS1Ty,
true));
// Test mismatched number of elements for pointers
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V4Int32PtrTy),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V4Int32PtrAS1Ty),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrAS1Ty));
// Check that assertion is not hit when creating a cast with a vector of
// pointers
// First form
BasicBlock *BB = BasicBlock::Create(C);
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
// Second form
auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
delete Inst2;
Inst1->eraseFromParent();
delete BB;
}
TEST(InstructionsTest, VectorGep) {
LLVMContext C;
// Type Definitions
Type *I8Ty = IntegerType::get(C, 8);
Type *I32Ty = IntegerType::get(C, 32);
PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
// Test different aspects of the vector-of-pointers type
// and GEPs which use this type.
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
std::vector<Constant*> ConstVa(2, Ci32a);
std::vector<Constant*> ConstVb(2, Ci32b);
Constant *C2xi32a = ConstantVector::get(ConstVa);
Constant *C2xi32b = ConstantVector::get(ConstVb);
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
BasicBlock* BB0 = BasicBlock::Create(C);
// Test InsertAtEnd ICmpInst constructor.
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
Value *S0 = BTC0->stripPointerCasts();
Value *S1 = BTC1->stripPointerCasts();
Value *S2 = BTC2->stripPointerCasts();
Value *S3 = BTC3->stripPointerCasts();
EXPECT_NE(S0, Gep0);
EXPECT_NE(S1, Gep1);
EXPECT_NE(S2, Gep2);
EXPECT_NE(S3, Gep3);
int64_t Offset;
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
":128:128-n8:16:32:64-S128");
// Make sure we don't crash
GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
// Gep of Geps
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
EXPECT_EQ(GepII0->getNumIndices(), 1u);
EXPECT_EQ(GepII1->getNumIndices(), 1u);
EXPECT_EQ(GepII2->getNumIndices(), 1u);
EXPECT_EQ(GepII3->getNumIndices(), 1u);
EXPECT_FALSE(GepII0->hasAllZeroIndices());
EXPECT_FALSE(GepII1->hasAllZeroIndices());
EXPECT_FALSE(GepII2->hasAllZeroIndices());
EXPECT_FALSE(GepII3->hasAllZeroIndices());
delete GepII0;
delete GepII1;
delete GepII2;
delete GepII3;
delete BTC0;
delete BTC1;
delete BTC2;
delete BTC3;
delete Gep0;
delete Gep1;
delete Gep2;
delete Gep3;
ICmp2->eraseFromParent();
delete BB0;
delete ICmp0;
delete ICmp1;
delete PtrVecA;
delete PtrVecB;
}
TEST(InstructionsTest, FPMathOperator) {
LLVMContext Context;
IRBuilder<> Builder(Context);
MDBuilder MDHelper(Context);
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
MDNode *MD1 = MDHelper.createFPMath(1.0);
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
EXPECT_TRUE(isa<FPMathOperator>(V1));
FPMathOperator *O1 = cast<FPMathOperator>(V1);
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
V1->deleteValue();
I->deleteValue();
}
TEST(InstructionsTest, isEliminableCastPair) {
LLVMContext C;
Type* Int16Ty = Type::getInt16Ty(C);
Type* Int32Ty = Type::getInt32Ty(C);
Type* Int64Ty = Type::getInt64Ty(C);
Type* Int64PtrTy = Type::getInt64PtrTy(C);
// Source and destination pointers have same size -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
Int32Ty, nullptr, Int32Ty),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is the maximum pointer size -> bitcast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
nullptr, nullptr, nullptr),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is not the maximum pointer size -> nothing
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int32Ty, Int64PtrTy,
nullptr, nullptr, nullptr),
0U);
// Middle pointer big enough -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
nullptr, Int64Ty, nullptr),
CastInst::BitCast);
// Middle pointer too small -> fail.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
nullptr, Int32Ty, nullptr),
0U);
// Test that we don't eliminate bitcasts between different address spaces,
// or if we don't have available pointer size information.
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
"-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
// Cannot simplify inttoptr, addrspacecast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::AddrSpaceCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
nullptr, Int16SizePtr, Int64SizePtr),
0U);
// Cannot simplify addrspacecast, ptrtoint
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
Int64SizePtr, Int16SizePtr, nullptr),
0U);
// Pass since the bitcast address spaces are the same
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
nullptr, nullptr, nullptr),
CastInst::IntToPtr);
}
TEST(InstructionsTest, CloneCall) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {
ConstantInt::get(Int32Ty, 1),
ConstantInt::get(Int32Ty, 2),
ConstantInt::get(Int32Ty, 3)
};
std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result"));
// Test cloning the tail call kind.
CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
CallInst::TCK_MustTail};
for (CallInst::TailCallKind TCK : Kinds) {
Call->setTailCallKind(TCK);
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
}
Call->setTailCallKind(CallInst::TCK_None);
// Test cloning an attribute.
{
AttrBuilder AB;
AB.addAttribute(Attribute::ReadOnly);
Call->setAttributes(
AttributeList::get(C, AttributeList::FunctionIndex, AB));
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
EXPECT_TRUE(Clone->onlyReadsMemory());
}
}
TEST(InstructionsTest, AlterCallBundles) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
std::unique_ptr<CallInst> Call(
CallInst::Create(Callee, Args, OldBundle, "result"));
Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
AttrBuilder AB;
AB.addAttribute(Attribute::Cold);
Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands());
EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
}
TEST(InstructionsTest, AlterInvokeBundles) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(
Callee, NormalDest.get(), UnwindDest.get(), Args, OldBundle, "result"));
AttrBuilder AB;
AB.addAttribute(Attribute::Cold);
Invoke->setAttributes(
AttributeList::get(C, AttributeList::FunctionIndex, AB));
Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
std::unique_ptr<InvokeInst> Clone(
InvokeInst::Create(Invoke.get(), NewBundle));
EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands());
EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
}
TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
auto *Arg0 = &*F->arg_begin();
IRBuilder<NoFolder> B(Ctx);
B.SetInsertPoint(OnlyBB);
{
auto *UI =
cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
ASSERT_TRUE(UI->isExact());
UI->dropPoisonGeneratingFlags();
ASSERT_FALSE(UI->isExact());
}
{
auto *ShrI =
cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
ASSERT_TRUE(ShrI->isExact());
ShrI->dropPoisonGeneratingFlags();
ASSERT_FALSE(ShrI->isExact());
}
{
auto *AI = cast<Instruction>(
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
ASSERT_TRUE(AI->hasNoUnsignedWrap());
AI->dropPoisonGeneratingFlags();
ASSERT_FALSE(AI->hasNoUnsignedWrap());
ASSERT_FALSE(AI->hasNoSignedWrap());
}
{
auto *SI = cast<Instruction>(
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
ASSERT_TRUE(SI->hasNoSignedWrap());
SI->dropPoisonGeneratingFlags();
ASSERT_FALSE(SI->hasNoUnsignedWrap());
ASSERT_FALSE(SI->hasNoSignedWrap());
}
{
auto *ShlI = cast<Instruction>(
B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
ASSERT_TRUE(ShlI->hasNoSignedWrap());
ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
ShlI->dropPoisonGeneratingFlags();
ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
ASSERT_FALSE(ShlI->hasNoSignedWrap());
}
{
Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
auto *GI = cast<GetElementPtrInst>(B.CreateInBoundsGEP(GEPBase, {Arg0}));
ASSERT_TRUE(GI->isInBounds());
GI->dropPoisonGeneratingFlags();
ASSERT_FALSE(GI->isInBounds());
}
}
TEST(InstructionsTest, GEPIndices) {
LLVMContext Context;
IRBuilder<NoFolder> Builder(Context);
Type *ElementTy = Builder.getInt8Ty();
Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
Value *Indices[] = {
Builder.getInt32(0),
Builder.getInt32(13),
Builder.getInt32(42) };
Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
Indices);
ASSERT_TRUE(isa<GetElementPtrInst>(V));
auto *GEPI = cast<GetElementPtrInst>(V);
ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
const auto *CGEPI = GEPI;
ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
delete GEPI;
}
TEST(InstructionsTest, SwitchInst) {
LLVMContext C;
std::unique_ptr<BasicBlock> BB1, BB2, BB3;
BB1.reset(BasicBlock::Create(C));
BB2.reset(BasicBlock::Create(C));
BB3.reset(BasicBlock::Create(C));
// We create block 0 after the others so that it gets destroyed first and
// clears the uses of the other basic blocks.
std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
auto *Int32Ty = Type::getInt32Ty(C);
SwitchInst *SI =
SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
auto CI = SI->case_begin();
ASSERT_NE(CI, SI->case_end());
EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
EXPECT_EQ(CI + 1, std::next(CI));
EXPECT_EQ(CI + 2, std::next(CI, 2));
EXPECT_EQ(CI + 3, std::next(CI, 3));
EXPECT_EQ(SI->case_end(), CI + 3);
EXPECT_EQ(0, CI - CI);
EXPECT_EQ(1, (CI + 1) - CI);
EXPECT_EQ(2, (CI + 2) - CI);
EXPECT_EQ(3, SI->case_end() - CI);
EXPECT_EQ(3, std::distance(CI, SI->case_end()));
auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
SwitchInst::ConstCaseIt CCE = SI->case_end();
ASSERT_NE(CCI, SI->case_end());
EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
EXPECT_EQ(CCI + 1, std::next(CCI));
EXPECT_EQ(CCI + 2, std::next(CCI, 2));
EXPECT_EQ(CCI + 3, std::next(CCI, 3));
EXPECT_EQ(CCE, CCI + 3);
EXPECT_EQ(0, CCI - CCI);
EXPECT_EQ(1, (CCI + 1) - CCI);
EXPECT_EQ(2, (CCI + 2) - CCI);
EXPECT_EQ(3, CCE - CCI);
EXPECT_EQ(3, std::distance(CCI, CCE));
// Make sure that the const iterator is compatible with a const auto ref.
const auto &Handle = *CCI;
EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
}
TEST(InstructionsTest, CommuteShuffleMask) {
SmallVector<int, 16> Indices({-1, 0, 7});
ShuffleVectorInst::commuteShuffleMask(Indices, 4);
EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
}
TEST(InstructionsTest, ShuffleMaskQueries) {
// Create the elements for various constant vectors.
LLVMContext Ctx;
Type *Int32Ty = Type::getInt32Ty(Ctx);
Constant *CU = UndefValue::get(Int32Ty);
Constant *C0 = ConstantInt::get(Int32Ty, 0);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
Constant *C3 = ConstantInt::get(Int32Ty, 3);
Constant *C4 = ConstantInt::get(Int32Ty, 4);
Constant *C5 = ConstantInt::get(Int32Ty, 5);
Constant *C6 = ConstantInt::get(Int32Ty, 6);
Constant *C7 = ConstantInt::get(Int32Ty, 7);
Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity));
Constant *Select = ConstantVector::get({CU, C1, C5});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select));
Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse));
Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource));
Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat));
Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose));
// More tests to make sure the logic is/stays correct...
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3})));
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3})));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4})));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7})));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3})));
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4})));
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0})));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7})));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3})));
}
TEST(InstructionsTest, SkipDebug) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C,
R"(
declare void @llvm.dbg.value(metadata, metadata, metadata)
define void @f() {
entry:
call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
ret void
}
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!3, !4}
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
!1 = !DIFile(filename: "t2.c", directory: "foo")
!2 = !{}
!3 = !{i32 2, !"Dwarf Version", i32 4}
!4 = !{i32 2, !"Debug Info Version", i32 3}
!8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
!9 = !DISubroutineType(types: !10)
!10 = !{null}
!11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
!13 = !DILocation(line: 2, column: 7, scope: !8)
)");
ASSERT_TRUE(M);
Function *F = cast<Function>(M->getNamedValue("f"));
BasicBlock &BB = F->front();
// The first non-debug instruction is the terminator.
auto *Term = BB.getTerminator();
EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
// After the terminator, there are no non-debug instructions.
EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
}
} // end anonymous namespace
} // end namespace llvm