1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 14:33:02 +02:00
llvm-mirror/lib/Target/ARM/ARMSubtarget.cpp
Sanjay Patel 83e1c48540 wrap OptSize and MinSize attributes for easier and consistent access (NFCI)
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).

Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.

This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.

Differential Revision: http://reviews.llvm.org/D11734

llvm-svn: 243994
2015-08-04 15:49:57 +00:00

306 lines
9.7 KiB
C++

//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "ARMSubtarget.h"
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "arm-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "ARMGenSubtargetInfo.inc"
static cl::opt<bool>
UseFusedMulOps("arm-use-mulops",
cl::init(true), cl::Hidden);
enum ITMode {
DefaultIT,
RestrictedIT,
NoRestrictedIT
};
static cl::opt<ITMode>
IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
cl::ZeroOrMore,
cl::values(clEnumValN(DefaultIT, "arm-default-it",
"Generate IT block based on arch"),
clEnumValN(RestrictedIT, "arm-restrict-it",
"Disallow deprecated IT based on ARMv8"),
clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
"Allow IT blocks based on ARMv7"),
clEnumValEnd));
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
StringRef FS) {
ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
if (STI.isThumb1Only())
return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
return new ARMFrameLowering(STI);
}
ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const ARMBaseTargetMachine &TM, bool IsLittle)
: ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
TargetTriple(TT), Options(TM.Options), TM(TM),
FrameLowering(initializeFrameLowering(CPU, FS)),
// At this point initializeSubtargetDependencies has been called so
// we can query directly.
InstrInfo(isThumb1Only()
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
: !isThumb()
? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
: (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
TLInfo(TM, *this) {}
void ARMSubtarget::initializeEnvironment() {
HasV4TOps = false;
HasV5TOps = false;
HasV5TEOps = false;
HasV6Ops = false;
HasV6MOps = false;
HasV6KOps = false;
HasV6T2Ops = false;
HasV7Ops = false;
HasV8Ops = false;
HasV8_1aOps = false;
HasVFPv2 = false;
HasVFPv3 = false;
HasVFPv4 = false;
HasFPARMv8 = false;
HasNEON = false;
UseNEONForSinglePrecisionFP = false;
UseMulOps = UseFusedMulOps;
SlowFPVMLx = false;
HasVMLxForwarding = false;
SlowFPBrcc = false;
InThumbMode = false;
UseSoftFloat = false;
HasThumb2 = false;
NoARM = false;
ReserveR9 = false;
NoMovt = false;
SupportsTailCall = false;
HasFP16 = false;
HasD16 = false;
HasHardwareDivide = false;
HasHardwareDivideInARM = false;
HasT2ExtractPack = false;
HasDataBarrier = false;
Pref32BitThumb = false;
AvoidCPSRPartialUpdate = false;
AvoidMOVsShifterOperand = false;
HasRAS = false;
HasMPExtension = false;
HasVirtualization = false;
FPOnlySP = false;
HasPerfMon = false;
HasTrustZone = false;
HasCrypto = false;
HasCRC = false;
HasZeroCycleZeroing = false;
StrictAlign = false;
Thumb2DSP = false;
UseNaClTrap = false;
GenLongCalls = false;
UnsafeFPMath = false;
}
void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
if (CPUString.empty()) {
if (isTargetDarwin() && TargetTriple.getArchName().endswith("v7s"))
// Default to the Swift CPU when targeting armv7s/thumbv7s.
CPUString = "swift";
else
CPUString = "generic";
}
// Insert the architecture feature derived from the target triple into the
// feature string. This is important for setting features that are implied
// based on the architecture version.
std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = FS;
}
ParseSubtargetFeatures(CPUString, ArchFS);
// FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
// Assert this for now to make the change obvious.
assert(hasV6T2Ops() || !hasThumb2());
// Keep a pointer to static instruction cost data for the specified CPU.
SchedModel = getSchedModelForCPU(CPUString);
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUString);
// FIXME: this is invalid for WindowsCE
if (isTargetWindows())
NoARM = true;
if (isAAPCS_ABI())
stackAlignment = 8;
if (isTargetNaCl())
stackAlignment = 16;
if (isTargetMachO())
SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
else
SupportsTailCall = !isThumb1Only();
switch (IT) {
case DefaultIT:
RestrictIT = hasV8Ops();
break;
case RestrictedIT:
RestrictIT = true;
break;
case NoRestrictedIT:
RestrictIT = false;
break;
}
// NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
const FeatureBitset &Bits = getFeatureBits();
if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
(Options.UnsafeFPMath || isTargetDarwin()))
UseNEONForSinglePrecisionFP = true;
}
bool ARMSubtarget::isAPCS_ABI() const {
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
}
bool ARMSubtarget::isAAPCS_ABI() const {
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS;
}
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
bool
ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
Reloc::Model RelocM) const {
if (RelocM == Reloc::Static)
return false;
bool isDef = GV->isStrongDefinitionForLinker();
if (!isTargetMachO()) {
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return false;
return true;
} else {
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (isDef)
return false;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return true;
if (RelocM == Reloc::PIC_) {
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (GV->isDeclarationForLinker() || GV->hasCommonLinkage())
// Hidden $non_lazy_ptr reference.
return true;
}
}
return false;
}
unsigned ARMSubtarget::getMispredictionPenalty() const {
return SchedModel.MispredictPenalty;
}
bool ARMSubtarget::hasSinCos() const {
return getTargetTriple().isiOS() && !getTargetTriple().isOSVersionLT(7, 0);
}
bool ARMSubtarget::enableMachineScheduler() const {
// Enable the MachineScheduler before register allocation for out-of-order
// architectures where we do not use the PostRA scheduler anymore (for now
// restricted to swift).
return getSchedModel().isOutOfOrder() && isSwift();
}
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
bool ARMSubtarget::enablePostRAScheduler() const {
// No need for PostRA scheduling on out of order CPUs (for now restricted to
// swift).
if (getSchedModel().isOutOfOrder() && isSwift())
return false;
return (!isThumb() || hasThumb2());
}
bool ARMSubtarget::enableAtomicExpand() const {
return hasAnyDataBarrier() && !isThumb1Only();
}
bool ARMSubtarget::useStride4VFPs(const MachineFunction &MF) const {
return isSwift() && !MF.getFunction()->hasFnAttribute(Attribute::MinSize);
}
bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
// NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
// immediates as it is inherently position independent, and may be out of
// range otherwise.
return !NoMovt && hasV6T2Ops() &&
(isTargetWindows() || !MF.getFunction()->optForMinSize());
}
bool ARMSubtarget::useFastISel() const {
// Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
return TM.Options.EnableFastISel &&
((isTargetMachO() && !isThumb1Only()) ||
(isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
}