1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/unittests/Transforms/Utils/CodeMoverUtilsTest.cpp
Rithik Sharma 6a4980e5c7 [CodeMoverUtils] Use dominator tree level to decide the direction of
code motion

Summary: Currently isSafeToMoveBefore uses DFS numbering for determining
the relative position of instruction and insert point which is not
always correct. This PR proposes the use of Dominator Tree depth for the
same. If a node is at a higher level than the insert point then it is
safe to say that we want to move in the forward direction.
Authored By: RithikSharma
Reviewer: Whitney, nikic, bmahjour, etiotto, fhahn
Reviewed By: Whitney
Subscribers: fhahn, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80084
2020-05-27 18:02:06 +00:00

652 lines
24 KiB
C++

//===- CodeMoverUtils.cpp - Unit tests for CodeMoverUtils ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "gtest/gtest.h"
using namespace llvm;
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("CodeMoverUtilsTests", errs());
return Mod;
}
static void run(Module &M, StringRef FuncName,
function_ref<void(Function &F, DominatorTree &DT,
PostDominatorTree &PDT, DependenceInfo &DI)>
Test) {
auto *F = M.getFunction(FuncName);
DominatorTree DT(*F);
PostDominatorTree PDT(*F);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
AssumptionCache AC(*F);
AliasAnalysis AA(TLI);
LoopInfo LI(DT);
ScalarEvolution SE(*F, TLI, AC, DT, LI);
DependenceInfo DI(F, &AA, &SE, &LI);
Test(*F, DT, PDT, DI);
}
static BasicBlock *getBasicBlockByName(Function &F, StringRef Name) {
for (BasicBlock &BB : F)
if (BB.getName() == Name)
return &BB;
llvm_unreachable("Expected to find basic block!");
}
static Instruction *getInstructionByName(Function &F, StringRef Name) {
for (BasicBlock &BB : F)
for (Instruction &I : BB)
if (I.getName() == Name)
return &I;
llvm_unreachable("Expected to find instruction!");
}
TEST(CodeMoverUtils, IsControlFlowEquivalentSimpleTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// i = 1;
// if (cond1)
// i = 2;
// if (cond2)
// i = 3;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2) {
entry:
br i1 %cond1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond1, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
br i1 %cond2, label %if.third, label %if.third.end
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *FirstIfBody, DT, PDT));
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *ThirdIfBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*SecondIfBody, *ThirdIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentOppositeCondTest) {
LLVMContext C;
// void foo(int &i, unsigned X, unsigned Y) {
// if (X < Y)
// i = 1;
// if (Y > X)
// i = 2;
// if (X >= Y)
// i = 3;
// else
// i = 4;
// if (X == Y)
// i = 5;
// if (Y == X)
// i = 6;
// else
// i = 7;
// if (X != Y)
// i = 8;
// else
// i = 9;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i32 %X, i32 %Y) {
entry:
%cmp1 = icmp ult i32 %X, %Y
br i1 %cmp1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
%cmp2 = icmp ugt i32 %Y, %X
br i1 %cmp2, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
%cmp3 = icmp uge i32 %X, %Y
br i1 %cmp3, label %if.third, label %if.third.else
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.else:
store i32 4, i32* %i, align 4
br label %if.third.end
if.third.end:
%cmp4 = icmp eq i32 %X, %Y
br i1 %cmp4, label %if.fourth, label %if.fourth.end
if.fourth:
store i32 5, i32* %i, align 4
br label %if.fourth.end
if.fourth.end:
%cmp5 = icmp eq i32 %Y, %X
br i1 %cmp5, label %if.fifth, label %if.fifth.else
if.fifth:
store i32 6, i32* %i, align 4
br label %if.fifth.end
if.fifth.else:
store i32 7, i32* %i, align 4
br label %if.fifth.end
if.fifth.end:
%cmp6 = icmp ne i32 %X, %Y
br i1 %cmp6, label %if.sixth, label %if.sixth.else
if.sixth:
store i32 8, i32* %i, align 4
br label %if.sixth.end
if.sixth.else:
store i32 9, i32* %i, align 4
br label %if.sixth.end
if.sixth.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
BasicBlock *ThirdElseBody = getBasicBlockByName(F, "if.third.else");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *ThirdElseBody, DT, PDT));
EXPECT_TRUE(
isControlFlowEquivalent(*SecondIfBody, *ThirdElseBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*ThirdIfBody, *ThirdElseBody, DT, PDT));
BasicBlock *FourthIfBody = getBasicBlockByName(F, "if.fourth");
BasicBlock *FifthIfBody = getBasicBlockByName(F, "if.fifth");
BasicBlock *FifthElseBody = getBasicBlockByName(F, "if.fifth.else");
EXPECT_FALSE(
isControlFlowEquivalent(*FifthIfBody, *FifthElseBody, DT, PDT));
BasicBlock *SixthIfBody = getBasicBlockByName(F, "if.sixth");
EXPECT_TRUE(
isControlFlowEquivalent(*FifthElseBody, *SixthIfBody, DT, PDT));
BasicBlock *SixthElseBody = getBasicBlockByName(F, "if.sixth.else");
EXPECT_TRUE(
isControlFlowEquivalent(*FourthIfBody, *SixthElseBody, DT, PDT));
EXPECT_TRUE(
isControlFlowEquivalent(*FifthIfBody, *SixthElseBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentCondNestTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// if (cond2)
// i = 1;
// if (cond2)
// if (cond1)
// i = 2;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2) {
entry:
br i1 %cond1, label %if.outer.first, label %if.first.end
if.outer.first:
br i1 %cond2, label %if.inner.first, label %if.first.end
if.inner.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond2, label %if.outer.second, label %if.second.end
if.outer.second:
br i1 %cond1, label %if.inner.second, label %if.second.end
if.inner.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstOuterIfBody = getBasicBlockByName(F, "if.outer.first");
BasicBlock *FirstInnerIfBody = getBasicBlockByName(F, "if.inner.first");
BasicBlock *SecondOuterIfBody =
getBasicBlockByName(F, "if.outer.second");
BasicBlock *SecondInnerIfBody =
getBasicBlockByName(F, "if.inner.second");
EXPECT_TRUE(isControlFlowEquivalent(*FirstInnerIfBody,
*SecondInnerIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstOuterIfBody,
*SecondOuterIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstOuterIfBody,
*SecondInnerIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstInnerIfBody,
*SecondOuterIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentImbalanceTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// if (cond2)
// if (cond3)
// i = 1;
// if (cond2)
// if (cond3)
// i = 2;
// if (cond1)
// if (cond1)
// i = 3;
// if (cond1)
// i = 4;
// }
std::unique_ptr<Module> M = parseIR(
C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2, i1 %cond3) {
entry:
br i1 %cond1, label %if.outer.first, label %if.first.end
if.outer.first:
br i1 %cond2, label %if.middle.first, label %if.first.end
if.middle.first:
br i1 %cond3, label %if.inner.first, label %if.first.end
if.inner.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond2, label %if.outer.second, label %if.second.end
if.outer.second:
br i1 %cond3, label %if.inner.second, label %if.second.end
if.inner.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
br i1 %cond1, label %if.outer.third, label %if.third.end
if.outer.third:
br i1 %cond1, label %if.inner.third, label %if.third.end
if.inner.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
br i1 %cond1, label %if.fourth, label %if.fourth.end
if.fourth:
store i32 4, i32* %i, align 4
br label %if.fourth.end
if.fourth.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.inner.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.inner.second");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.inner.third");
BasicBlock *FourthIfBody = getBasicBlockByName(F, "if.fourth");
EXPECT_TRUE(
isControlFlowEquivalent(*ThirdIfBody, *FourthIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentPointerTest) {
LLVMContext C;
// void foo(int &i, int *cond) {
// if (*cond)
// i = 1;
// if (*cond)
// i = 2;
// *cond = 1;
// if (*cond)
// i = 3;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i32* %cond) {
entry:
%0 = load i32, i32* %cond, align 4
%tobool1 = icmp ne i32 %0, 0
br i1 %tobool1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
%1 = load i32, i32* %cond, align 4
%tobool2 = icmp ne i32 %1, 0
br i1 %tobool2, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
store i32 1, i32* %cond, align 4
%2 = load i32, i32* %cond, align 4
%tobool3 = icmp ne i32 %2, 0
br i1 %tobool3, label %if.third, label %if.third.end
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
// Limitation: if we can prove cond haven't been modify between %0 and
// %1, then we can prove FirstIfBody and SecondIfBody are control flow
// equivalent.
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *ThirdIfBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*SecondIfBody, *ThirdIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentNotPostdomTest) {
LLVMContext C;
// void foo(bool cond1, bool cond2) {
// if (cond1) {
// if (cond2)
// return;
// } else
// if (cond2)
// return;
// return;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond1, i1 %cond2) {
idom:
br i1 %cond1, label %succ0, label %succ1
succ0:
br i1 %cond2, label %succ0ret, label %succ0succ1
succ0ret:
ret void
succ0succ1:
br label %bb
succ1:
br i1 %cond2, label %succ1ret, label %succ1succ1
succ1ret:
ret void
succ1succ1:
br label %bb
bb:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock &Idom = F.front();
assert(Idom.getName() == "idom" && "Expecting BasicBlock idom");
BasicBlock &BB = F.back();
assert(BB.getName() == "bb" && "Expecting BasicBlock bb");
EXPECT_FALSE(isControlFlowEquivalent(Idom, BB, DT, PDT));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest1) {
LLVMContext C;
// void safecall() noexcept willreturn nosync;
// void unsafecall();
// void foo(int * __restrict__ A, int * __restrict__ B, int * __restrict__ C,
// long N) {
// X = N / 1;
// safecall();
// unsafecall1();
// unsafecall2();
// for (long i = 0; i < N; ++i) {
// A[5] = 5;
// A[i] = 0;
// B[i] = A[i];
// C[i] = A[i];
// A[6] = 6;
// }
// }
std::unique_ptr<Module> M = parseIR(
C, R"(define void @foo(i32* noalias %A, i32* noalias %B, i32* noalias %C
, i64 %N) {
entry:
%X = sdiv i64 1, %N
call void @safecall()
%cmp1 = icmp slt i64 0, %N
call void @unsafecall1()
call void @unsafecall2()
br i1 %cmp1, label %for.body, label %for.end
for.body:
%i = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%arrayidx_A5 = getelementptr inbounds i32, i32* %A, i64 5
store i32 5, i32* %arrayidx_A5, align 4
%arrayidx_A = getelementptr inbounds i32, i32* %A, i64 %i
store i32 0, i32* %arrayidx_A, align 4
%load1 = load i32, i32* %arrayidx_A, align 4
%arrayidx_B = getelementptr inbounds i32, i32* %B, i64 %i
store i32 %load1, i32* %arrayidx_B, align 4
%load2 = load i32, i32* %arrayidx_A, align 4
%arrayidx_C = getelementptr inbounds i32, i32* %C, i64 %i
store i32 %load2, i32* %arrayidx_C, align 4
%arrayidx_A6 = getelementptr inbounds i32, i32* %A, i64 6
store i32 6, i32* %arrayidx_A6, align 4
%inc = add nsw i64 %i, 1
%cmp = icmp slt i64 %inc, %N
br i1 %cmp, label %for.body, label %for.end
for.end:
ret void
}
declare void @safecall() nounwind nosync willreturn
declare void @unsafecall1()
declare void @unsafecall2())");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *Entry = getBasicBlockByName(F, "entry");
Instruction *CI_safecall = Entry->front().getNextNode();
assert(isa<CallInst>(CI_safecall) &&
"Expecting CI_safecall to be a CallInst");
Instruction *CI_unsafecall = CI_safecall->getNextNode()->getNextNode();
assert(isa<CallInst>(CI_unsafecall) &&
"Expecting CI_unsafecall to be a CallInst");
BasicBlock *ForBody = getBasicBlockByName(F, "for.body");
Instruction &PN = ForBody->front();
assert(isa<PHINode>(PN) && "Expecting PN to be a PHINode");
Instruction *SI_A5 =
getInstructionByName(F, "arrayidx_A5")->getNextNode();
Instruction *SI = getInstructionByName(F, "arrayidx_A")->getNextNode();
Instruction *LI1 = getInstructionByName(F, "load1");
Instruction *LI2 = getInstructionByName(F, "load2");
Instruction *SI_A6 =
getInstructionByName(F, "arrayidx_A6")->getNextNode();
// Can move after CI_safecall, as it does not throw, not synchronize, or
// must return.
EXPECT_TRUE(isSafeToMoveBefore(*CI_safecall->getPrevNode(),
*CI_safecall->getNextNode(), DT, PDT,
DI));
// Cannot move CI_unsafecall, as it may throw.
EXPECT_FALSE(isSafeToMoveBefore(*CI_unsafecall->getNextNode(),
*CI_unsafecall, DT, PDT, DI));
// Moving instruction to non control flow equivalent places are not
// supported.
EXPECT_FALSE(
isSafeToMoveBefore(*SI_A5, *Entry->getTerminator(), DT, PDT, DI));
// Moving PHINode is not supported.
EXPECT_FALSE(isSafeToMoveBefore(PN, *PN.getNextNode()->getNextNode(),
DT, PDT, DI));
// Cannot move non-PHINode before PHINode.
EXPECT_FALSE(isSafeToMoveBefore(*PN.getNextNode(), PN, DT, PDT, DI));
// Moving Terminator is not supported.
EXPECT_FALSE(isSafeToMoveBefore(*Entry->getTerminator(),
*PN.getNextNode(), DT, PDT, DI));
// Cannot move %arrayidx_A after SI, as SI is its user.
EXPECT_FALSE(isSafeToMoveBefore(*SI->getPrevNode(), *SI->getNextNode(),
DT, PDT, DI));
// Cannot move SI before %arrayidx_A, as %arrayidx_A is its operand.
EXPECT_FALSE(isSafeToMoveBefore(*SI, *SI->getPrevNode(), DT, PDT, DI));
// Cannot move LI2 after SI_A6, as there is a flow dependence.
EXPECT_FALSE(
isSafeToMoveBefore(*LI2, *SI_A6->getNextNode(), DT, PDT, DI));
// Cannot move SI after LI1, as there is a anti dependence.
EXPECT_FALSE(isSafeToMoveBefore(*SI, *LI1->getNextNode(), DT, PDT, DI));
// Cannot move SI_A5 after SI, as there is a output dependence.
EXPECT_FALSE(isSafeToMoveBefore(*SI_A5, *LI1, DT, PDT, DI));
// Can move LI2 before LI1, as there is only an input dependence.
EXPECT_TRUE(isSafeToMoveBefore(*LI2, *LI1, DT, PDT, DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest2) {
LLVMContext C;
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond, i32 %op0, i32 %op1) {
entry:
br i1 %cond, label %if.then.first, label %if.end.first
if.then.first:
%add = add i32 %op0, %op1
%user = add i32 %add, 1
br label %if.end.first
if.end.first:
br i1 %cond, label %if.then.second, label %if.end.second
if.then.second:
%sub_op0 = add i32 %op0, 1
%sub = sub i32 %sub_op0, %op1
br label %if.end.second
if.end.second:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *AddInst = getInstructionByName(F, "add");
Instruction *SubInst = getInstructionByName(F, "sub");
// Cannot move as %user uses %add and %sub doesn't dominates %user.
EXPECT_FALSE(isSafeToMoveBefore(*AddInst, *SubInst, DT, PDT, DI));
// Cannot move as %sub_op0 is an operand of %sub and %add doesn't
// dominates %sub_op0.
EXPECT_FALSE(isSafeToMoveBefore(*SubInst, *AddInst, DT, PDT, DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest3) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C, R"(define void @foo(i64 %N) {
entry:
br label %for.body
for.body:
%i = phi i64 [ 0, %entry ], [ %inc, %for.latch ]
%inc = add nsw i64 %i, 1
br label %for.latch
for.latch:
%cmp = icmp slt i64 %inc, %N
br i1 %cmp, label %for.body, label %for.end
for.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *IncInst = getInstructionByName(F, "inc");
Instruction *CmpInst = getInstructionByName(F, "cmp");
// Can move as the incoming block of %inc for %i (%for.latch) dominated
// by %cmp.
EXPECT_TRUE(isSafeToMoveBefore(*IncInst, *CmpInst, DT, PDT, DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest4) {
LLVMContext C;
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond, i32 %op0, i32 %op1) {
entry:
br i1 %cond, label %if.end.first, label %if.then.first
if.then.first:
%add = add i32 %op0, %op1
%user = add i32 %add, 1
br label %if.end.first
if.end.first:
br i1 %cond, label %if.end.second, label %if.then.second
if.then.second:
%sub_op0 = add i32 %op0, 1
%sub = sub i32 %sub_op0, %op1
br label %if.end.second
if.end.second:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *AddInst = getInstructionByName(F, "add");
Instruction *SubInst = getInstructionByName(F, "sub");
// Cannot move as %user uses %add and %sub doesn't dominates %user.
EXPECT_FALSE(isSafeToMoveBefore(*AddInst, *SubInst, DT, PDT, DI));
// Cannot move as %sub_op0 is an operand of %sub and %add doesn't
// dominates %sub_op0.
EXPECT_FALSE(isSafeToMoveBefore(*SubInst, *AddInst, DT, PDT, DI));
});
}