1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/X86/X86LegalizerInfo.cpp
Daniel Sanders 233ed83478 [globalisel] Add G_SEXT_INREG
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
  %1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
  %2:_(s32) = G_ASHR %1:_(s32), i32 24
  %3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
  %1:_(s32) = G_SHL %0:_(s32), i32 24
  %2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
  %2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
  %3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
  %1:_(s32) = G_SHL %0:_(s32), i32 24
  %2:_(s32) = G_ASHR %1:_(s32), i32 24
  %3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
  %1:_(s32) = G_SHL %0:_(s32), i32 24
  %2:_(s32) = G_ASHR %1:_(s32), i32 23

All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.

To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
  %1 = G_CONSTANT 16
  %2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
  %2 = G_SEXT_INREG %0, 16
or:
  %1 = G_CONSTANT 16
  %2:_(s32) = G_SHL %0, %1
  %3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.

Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm

Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61289

llvm-svn: 368487
2019-08-09 21:11:20 +00:00

532 lines
16 KiB
C++

//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86LegalizerInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace TargetOpcode;
using namespace LegalizeActions;
/// FIXME: The following static functions are SizeChangeStrategy functions
/// that are meant to temporarily mimic the behaviour of the old legalization
/// based on doubling/halving non-legal types as closely as possible. This is
/// not entirly possible as only legalizing the types that are exactly a power
/// of 2 times the size of the legal types would require specifying all those
/// sizes explicitly.
/// In practice, not specifying those isn't a problem, and the below functions
/// should disappear quickly as we add support for legalizing non-power-of-2
/// sized types further.
static void
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
const LegalizerInfo::SizeAndActionsVec &v) {
for (unsigned i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 < v[i].first && i + 1 < v.size() &&
v[i + 1].first != v[i].first + 1)
result.push_back({v[i].first + 1, Unsupported});
}
}
static LegalizerInfo::SizeAndActionsVec
widen_1(const LegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 1);
LegalizerInfo::SizeAndActionsVec result = {{1, WidenScalar},
{2, Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, Unsupported});
return result;
}
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
const X86TargetMachine &TM)
: Subtarget(STI), TM(TM) {
setLegalizerInfo32bit();
setLegalizerInfo64bit();
setLegalizerInfoSSE1();
setLegalizerInfoSSE2();
setLegalizerInfoSSE41();
setLegalizerInfoAVX();
setLegalizerInfoAVX2();
setLegalizerInfoAVX512();
setLegalizerInfoAVX512DQ();
setLegalizerInfoAVX512BW();
setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1);
for (unsigned BinOp : {G_SUB, G_MUL, G_AND, G_OR, G_XOR})
setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1);
for (unsigned MemOp : {G_LOAD, G_STORE})
setLegalizeScalarToDifferentSizeStrategy(MemOp, 0,
narrowToSmallerAndWidenToSmallest);
setLegalizeScalarToDifferentSizeStrategy(
G_GEP, 1, widenToLargerTypesUnsupportedOtherwise);
setLegalizeScalarToDifferentSizeStrategy(
G_CONSTANT, 0, widenToLargerTypesAndNarrowToLargest);
computeTables();
verify(*STI.getInstrInfo());
}
bool X86LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
switch (MI.getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memset:
case Intrinsic::memmove:
if (createMemLibcall(MIRBuilder, MRI, MI) ==
LegalizerHelper::UnableToLegalize)
return false;
MI.eraseFromParent();
return true;
default:
break;
}
return true;
}
void X86LegalizerInfo::setLegalizerInfo32bit() {
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
for (auto Ty : {p0, s1, s8, s16, s32})
setAction({G_IMPLICIT_DEF, Ty}, Legal);
for (auto Ty : {s8, s16, s32, p0})
setAction({G_PHI, Ty}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
for (auto Ty : {s8, s16, s32})
setAction({BinOp, Ty}, Legal);
for (unsigned Op : {G_UADDE}) {
setAction({Op, s32}, Legal);
setAction({Op, 1, s1}, Legal);
}
for (unsigned MemOp : {G_LOAD, G_STORE}) {
for (auto Ty : {s8, s16, s32, p0})
setAction({MemOp, Ty}, Legal);
// And everything's fine in addrspace 0.
setAction({MemOp, 1, p0}, Legal);
}
// Pointer-handling
setAction({G_FRAME_INDEX, p0}, Legal);
setAction({G_GLOBAL_VALUE, p0}, Legal);
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s32}, Legal);
if (!Subtarget.is64Bit()) {
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32}, {p0})
.maxScalar(0, s32)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
// Shifts and SDIV
getActionDefinitionsBuilder(
{G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32})
.clampScalar(0, s8, s32);
getActionDefinitionsBuilder(
{G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}})
.clampScalar(0, s8, s32)
.clampScalar(1, s8, s8);
}
// Control-flow
setAction({G_BRCOND, s1}, Legal);
// Constants
for (auto Ty : {s8, s16, s32, p0})
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
// Extensions
for (auto Ty : {s8, s16, s32}) {
setAction({G_ZEXT, Ty}, Legal);
setAction({G_SEXT, Ty}, Legal);
setAction({G_ANYEXT, Ty}, Legal);
}
setAction({G_ANYEXT, s128}, Legal);
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
// Comparison
setAction({G_ICMP, s1}, Legal);
for (auto Ty : {s8, s16, s32, p0})
setAction({G_ICMP, 1, Ty}, Legal);
// Merge/Unmerge
for (const auto &Ty : {s16, s32, s64}) {
setAction({G_MERGE_VALUES, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {s8, s16, s32}) {
setAction({G_MERGE_VALUES, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfo64bit() {
if (!Subtarget.is64Bit())
return;
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
setAction({G_IMPLICIT_DEF, s64}, Legal);
// Need to have that, as tryFoldImplicitDef will create this pattern:
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
setAction({G_IMPLICIT_DEF, s128}, Legal);
setAction({G_PHI, s64}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
setAction({BinOp, s64}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
setAction({MemOp, s64}, Legal);
// Pointer-handling
setAction({G_GEP, 1, s64}, Legal);
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s64}});
// Constants
setAction({TargetOpcode::G_CONSTANT, s64}, Legal);
// Extensions
for (unsigned extOp : {G_ZEXT, G_SEXT, G_ANYEXT}) {
setAction({extOp, s64}, Legal);
}
getActionDefinitionsBuilder(G_SITOFP)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FPTOSI)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(1);
// Comparison
setAction({G_ICMP, 1, s64}, Legal);
getActionDefinitionsBuilder(G_FCMP)
.legalForCartesianProduct({s8}, {s32, s64})
.clampScalar(0, s8, s8)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
// Divisions
getActionDefinitionsBuilder(
{G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32, s64})
.clampScalar(0, s8, s64);
// Shifts
getActionDefinitionsBuilder(
{G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}, {s64, s8}})
.clampScalar(0, s8, s64)
.clampScalar(1, s8, s8);
// Merge/Unmerge
setAction({G_MERGE_VALUES, s128}, Legal);
setAction({G_UNMERGE_VALUES, 1, s128}, Legal);
setAction({G_MERGE_VALUES, 1, s128}, Legal);
setAction({G_UNMERGE_VALUES, s128}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE1() {
if (!Subtarget.hasSSE1())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s32, v4s32})
setAction({BinOp, Ty}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v4s32, v2s64})
setAction({MemOp, Ty}, Legal);
// Constants
setAction({TargetOpcode::G_FCONSTANT, s32}, Legal);
// Merge/Unmerge
for (const auto &Ty : {v4s32, v2s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
setAction({G_MERGE_VALUES, 1, s64}, Legal);
setAction({G_UNMERGE_VALUES, s64}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE2() {
if (!Subtarget.hasSSE2())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s64, v2s64})
setAction({BinOp, Ty}, Legal);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v16s8, v8s16, v4s32, v2s64})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v8s16}, Legal);
setAction({G_FPEXT, s64}, Legal);
setAction({G_FPEXT, 1, s32}, Legal);
setAction({G_FPTRUNC, s32}, Legal);
setAction({G_FPTRUNC, 1, s64}, Legal);
// Constants
setAction({TargetOpcode::G_FCONSTANT, s64}, Legal);
// Merge/Unmerge
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {v16s8, v8s16, v4s32, v2s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoSSE41() {
if (!Subtarget.hasSSE41())
return;
const LLT v4s32 = LLT::vector(4, 32);
setAction({G_MUL, v4s32}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX() {
if (!Subtarget.hasAVX())
return;
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v8s32, v4s64})
setAction({MemOp, Ty}, Legal);
for (auto Ty : {v32s8, v16s16, v8s32, v4s64}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_EXTRACT, 1, Ty}, Legal);
}
for (auto Ty : {v16s8, v8s16, v4s32, v2s64}) {
setAction({G_INSERT, 1, Ty}, Legal);
setAction({G_EXTRACT, Ty}, Legal);
}
// Merge/Unmerge
for (const auto &Ty :
{v32s8, v64s8, v16s16, v32s16, v8s32, v16s32, v4s64, v8s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX2() {
if (!Subtarget.hasAVX2())
return;
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v32s8, v16s16, v8s32, v4s64})
setAction({BinOp, Ty}, Legal);
for (auto Ty : {v16s16, v8s32})
setAction({G_MUL, Ty}, Legal);
// Merge/Unmerge
for (const auto &Ty : {v64s8, v32s16, v16s32, v8s64}) {
setAction({G_CONCAT_VECTORS, Ty}, Legal);
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
}
for (const auto &Ty : {v32s8, v16s16, v8s32, v4s64}) {
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
setAction({G_UNMERGE_VALUES, Ty}, Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX512() {
if (!Subtarget.hasAVX512())
return;
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
const LLT v32s8 = LLT::vector(32, 8);
const LLT v16s16 = LLT::vector(16, 16);
const LLT v8s32 = LLT::vector(8, 32);
const LLT v4s64 = LLT::vector(4, 64);
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
const LLT v16s32 = LLT::vector(16, 32);
const LLT v8s64 = LLT::vector(8, 64);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v16s32, v8s64})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v16s32}, Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v16s32, v8s64})
setAction({MemOp, Ty}, Legal);
for (auto Ty : {v64s8, v32s16, v16s32, v8s64}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_EXTRACT, 1, Ty}, Legal);
}
for (auto Ty : {v32s8, v16s16, v8s32, v4s64, v16s8, v8s16, v4s32, v2s64}) {
setAction({G_INSERT, 1, Ty}, Legal);
setAction({G_EXTRACT, Ty}, Legal);
}
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
for (auto Ty : {v4s32, v8s32})
setAction({G_MUL, Ty}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX512DQ() {
if (!(Subtarget.hasAVX512() && Subtarget.hasDQI()))
return;
const LLT v8s64 = LLT::vector(8, 64);
setAction({G_MUL, v8s64}, Legal);
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
const LLT v2s64 = LLT::vector(2, 64);
const LLT v4s64 = LLT::vector(4, 64);
for (auto Ty : {v2s64, v4s64})
setAction({G_MUL, Ty}, Legal);
}
void X86LegalizerInfo::setLegalizerInfoAVX512BW() {
if (!(Subtarget.hasAVX512() && Subtarget.hasBWI()))
return;
const LLT v64s8 = LLT::vector(64, 8);
const LLT v32s16 = LLT::vector(32, 16);
for (unsigned BinOp : {G_ADD, G_SUB})
for (auto Ty : {v64s8, v32s16})
setAction({BinOp, Ty}, Legal);
setAction({G_MUL, v32s16}, Legal);
/************ VLX *******************/
if (!Subtarget.hasVLX())
return;
const LLT v8s16 = LLT::vector(8, 16);
const LLT v16s16 = LLT::vector(16, 16);
for (auto Ty : {v8s16, v16s16})
setAction({G_MUL, Ty}, Legal);
}