mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
8131335c27
* ValueHolder became a 3 argument template. This allows for BasicBlock to use the value holder arg as a typesafe parent pointer. * SymTabValue no longer inherits from Value * Method does not inherit from only SymTabValue. Now it inherits from both STV & Value. * Module does not inherit from only SymTabValue. Now it inherits from both STV & Value. * Updated the SymTabValue.h file to reference SymTabValue instead of STDef in several places * Added isArraySelector & isStructSelector to GetElementPtr instruction llvm-svn: 177
184 lines
6.6 KiB
C++
184 lines
6.6 KiB
C++
//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
|
|
//
|
|
// This file defines the very important Value class. This is subclassed by a
|
|
// bunch of other important classes, like Def, Method, Module, Type, etc...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_VALUE_H
|
|
#define LLVM_VALUE_H
|
|
|
|
#include <string>
|
|
#include <list>
|
|
|
|
class User;
|
|
class Type;
|
|
class ConstPoolVal;
|
|
class MethodArgument;
|
|
class Instruction;
|
|
class BasicBlock;
|
|
class Method;
|
|
class Module;
|
|
template<class ValueSubclass, class ItemParentType, class SymTabType>
|
|
class ValueHolder;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class Value {
|
|
public:
|
|
enum ValueTy {
|
|
TypeVal, // This is an instance of Type
|
|
ConstantVal, // This is an instance of ConstPoolVal
|
|
MethodArgumentVal, // This is an instance of MethodArgument
|
|
InstructionVal, // This is an instance of Instruction
|
|
|
|
BasicBlockVal, // This is an instance of BasicBlock
|
|
MethodVal, // This is an instance of Method
|
|
ModuleVal, // This is an instance of Module
|
|
};
|
|
|
|
private:
|
|
list<User *> Uses;
|
|
string Name;
|
|
const Type *Ty;
|
|
ValueTy VTy;
|
|
|
|
Value(const Value &); // Do not implement
|
|
protected:
|
|
inline void setType(const Type *ty) { Ty = ty; }
|
|
public:
|
|
Value(const Type *Ty, ValueTy vty, const string &name = "");
|
|
virtual ~Value();
|
|
|
|
inline const Type *getType() const { return Ty; }
|
|
|
|
// All values can potentially be named...
|
|
inline bool hasName() const { return Name != ""; }
|
|
inline const string &getName() const { return Name; }
|
|
virtual void setName(const string &name) { Name = name; }
|
|
|
|
// Methods for determining the subtype of this Value. The getValueType()
|
|
// method returns the type of the value directly. The cast*() methods are
|
|
// equilivent to using dynamic_cast<>... if the cast is successful, this is
|
|
// returned, otherwise you get a null pointer, allowing expressions like this:
|
|
//
|
|
// if (Instruction *I = Val->castInstruction()) { ... }
|
|
//
|
|
// This section also defines a family of isType, isConstant, isMethodArgument,
|
|
// etc functions...
|
|
//
|
|
// The family of functions Val->cast<type>Asserting() is used in the same
|
|
// way as the Val->cast<type>() instructions, but they assert the expected
|
|
// type instead of checking it at runtime.
|
|
//
|
|
inline ValueTy getValueType() const { return VTy; }
|
|
|
|
// Use a macro to define the functions, otherwise these definitions are just
|
|
// really long and ugly.
|
|
#define CAST_FN(NAME, CLASS) \
|
|
inline bool is##NAME() const { return VTy == NAME##Val; } \
|
|
inline const CLASS *cast##NAME() const { /*const version */ \
|
|
return is##NAME() ? (const CLASS*)this : 0; \
|
|
} \
|
|
inline CLASS *cast##NAME() { /* nonconst version */ \
|
|
return is##NAME() ? (CLASS*)this : 0; \
|
|
} \
|
|
inline const CLASS *cast##NAME##Asserting() const { /*const version */ \
|
|
assert(is##NAME() && "Expected Value Type: " #NAME); \
|
|
return (const CLASS*)this; \
|
|
} \
|
|
inline CLASS *cast##NAME##Asserting() { /* nonconst version */ \
|
|
assert(is##NAME() && "Expected Value Type: " #NAME); \
|
|
return (CLASS*)this; \
|
|
} \
|
|
|
|
CAST_FN(Constant , ConstPoolVal )
|
|
CAST_FN(MethodArgument, MethodArgument)
|
|
CAST_FN(Instruction , Instruction )
|
|
CAST_FN(BasicBlock , BasicBlock )
|
|
CAST_FN(Method , Method )
|
|
CAST_FN(Module , Module )
|
|
#undef CAST_FN
|
|
|
|
// Type value is special, because there is no nonconst version of functions!
|
|
inline bool isType() const { return VTy == TypeVal; }
|
|
inline const Type *castType() const {
|
|
return (VTy == TypeVal) ? (const Type*)this : 0;
|
|
}
|
|
inline const Type *castTypeAsserting() const {
|
|
assert(isType() && "Expected Value Type: Type");
|
|
return (const Type*)this;
|
|
}
|
|
|
|
// replaceAllUsesWith - Go through the uses list for this definition and make
|
|
// each use point to "D" instead of "this". After this completes, 'this's
|
|
// use list should be empty.
|
|
//
|
|
void replaceAllUsesWith(Value *D);
|
|
|
|
//----------------------------------------------------------------------
|
|
// Methods for handling the list of uses of this DEF.
|
|
//
|
|
typedef list<User*>::iterator use_iterator;
|
|
typedef list<User*>::const_iterator use_const_iterator;
|
|
|
|
inline unsigned use_size() const { return Uses.size(); }
|
|
inline bool use_empty() const { return Uses.empty(); }
|
|
inline use_iterator use_begin() { return Uses.begin(); }
|
|
inline use_const_iterator use_begin() const { return Uses.begin(); }
|
|
inline use_iterator use_end() { return Uses.end(); }
|
|
inline use_const_iterator use_end() const { return Uses.end(); }
|
|
|
|
inline void use_push_back(User *I) { Uses.push_back(I); }
|
|
User *use_remove(use_iterator &I);
|
|
|
|
inline void addUse(User *I) { Uses.push_back(I); }
|
|
void killUse(User *I);
|
|
};
|
|
|
|
// UseTy and it's friendly typedefs (Use) are here to make keeping the "use"
|
|
// list of a definition node up-to-date really easy.
|
|
//
|
|
template<class ValueSubclass>
|
|
class UseTy {
|
|
ValueSubclass *Val;
|
|
User *U;
|
|
public:
|
|
inline UseTy<ValueSubclass>(ValueSubclass *v, User *user) {
|
|
Val = v; U = user;
|
|
if (Val) Val->addUse(U);
|
|
}
|
|
|
|
inline ~UseTy<ValueSubclass>() { if (Val) Val->killUse(U); }
|
|
|
|
inline operator ValueSubclass *() const { return Val; }
|
|
|
|
inline UseTy<ValueSubclass>(const UseTy<ValueSubclass> &user) {
|
|
Val = 0;
|
|
U = user.U;
|
|
operator=(user.Val);
|
|
}
|
|
inline ValueSubclass *operator=(ValueSubclass *V) {
|
|
if (Val) Val->killUse(U);
|
|
Val = V;
|
|
if (V) V->addUse(U);
|
|
return V;
|
|
}
|
|
|
|
inline ValueSubclass *operator->() { return Val; }
|
|
inline const ValueSubclass *operator->() const { return Val; }
|
|
|
|
inline UseTy<ValueSubclass> &operator=(const UseTy<ValueSubclass> &user) {
|
|
if (Val) Val->killUse(U);
|
|
Val = user.Val;
|
|
Val->addUse(U);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
typedef UseTy<Value> Use;
|
|
|
|
#endif
|