1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-30 07:22:55 +01:00
llvm-mirror/lib/CWriter/Writer.cpp
Joel Stanley 0a940fa30a - Fixed name mangling conditions to handle 'linkonce' linkage type. In
particular, name mangling for GlobalValues only occurs when the linkage type is
internal or when the name must be mangled to avoid a collision.  See comments in
CWriter::getValueName for more information.

- 'inline' keyword is now emitted for functions with 'linkonce' linkage type.

- Fixed typos.

llvm-svn: 6898
2003-06-25 04:52:09 +00:00

1286 lines
42 KiB
C++

//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
//
// This library converts LLVM code to C code, compilable by GCC.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/CWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/SymbolTable.h"
#include "llvm/Intrinsics.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <set>
#include <sstream>
namespace {
class CWriter : public Pass, public InstVisitor<CWriter> {
std::ostream &Out;
SlotCalculator *Table;
const Module *TheModule;
std::map<const Type *, std::string> TypeNames;
std::set<const Value*> MangledGlobals;
bool needsMalloc;
std::map<const ConstantFP *, unsigned> FPConstantMap;
public:
CWriter(std::ostream &o) : Out(o) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<FindUsedTypes>();
}
virtual bool run(Module &M) {
// Initialize
Table = new SlotCalculator(&M, false);
TheModule = &M;
// Ensure that all structure types have names...
bool Changed = nameAllUsedStructureTypes(M);
// Run...
printModule(&M);
// Free memory...
delete Table;
TypeNames.clear();
MangledGlobals.clear();
return false;
}
std::ostream &printType(std::ostream &Out, const Type *Ty,
const std::string &VariableName = "",
bool IgnoreName = false, bool namedContext = true);
void writeOperand(Value *Operand);
void writeOperandInternal(Value *Operand);
std::string getValueName(const Value *V);
private :
bool nameAllUsedStructureTypes(Module &M);
void printModule(Module *M);
void printSymbolTable(const SymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
void printFunctionSignature(const Function *F, bool Prototype);
void printFunction(Function *);
void printConstant(Constant *CPV);
void printConstantArray(ConstantArray *CPA);
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I)) // Don't inline a load across a store!
return false;
// Only inline instruction it it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
// variables which are accessed with the & operator. This causes GCC to
// generate significantly better code than to emit alloca calls directly.
//
static const AllocaInst *isDirectAlloca(const Value *V) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI) return false;
if (AI->isArrayAllocation())
return 0; // FIXME: we can also inline fixed size array allocas!
if (AI->getParent() != &AI->getParent()->getParent()->getEntryNode())
return 0;
return AI;
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitPHINode(PHINode &I);
void visitBinaryOperator(Instruction &I);
void visitCastInst (CastInst &I);
void visitCallInst (CallInst &I);
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
void visitMallocInst(MallocInst &I);
void visitAllocaInst(AllocaInst &I);
void visitFreeInst (FreeInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitVarArgInst(VarArgInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "C Writer does not know about " << I;
abort();
}
void outputLValue(Instruction *I) {
Out << " " << getValueName(I) << " = ";
}
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printIndexingExpression(Value *Ptr, User::op_iterator I,
User::op_iterator E);
};
}
// We dont want identifier names with ., space, - in them.
// So we replace them with _
static std::string makeNameProper(std::string x) {
std::string tmp;
for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
switch (*sI) {
case '.': tmp += "d_"; break;
case ' ': tmp += "s_"; break;
case '-': tmp += "D_"; break;
default: tmp += *sI;
}
return tmp;
}
std::string CWriter::getValueName(const Value *V) {
if (V->hasName()) { // Print out the label if it exists...
// Name mangling occurs as follows:
// - If V is not a global, mangling always occurs.
// - Otherwise, mangling occurs when any of the following are true:
// 1) V has internal linkage
// 2) V's name would collide if it is not mangled.
//
if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) {
if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
// No internal linkage, name will not collide -> no mangling.
return makeNameProper(gv->getName());
}
}
// Non-global, or global with internal linkage / colliding name -> mangle.
return "l" + utostr(V->getType()->getUniqueID()) + "_" +
makeNameProper(V->getName());
}
int Slot = Table->getValSlot(V);
assert(Slot >= 0 && "Invalid value!");
return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID());
}
// A pointer type should not use parens around *'s alone, e.g., (**)
inline bool ptrTypeNameNeedsParens(const std::string &NameSoFar) {
return (NameSoFar.find_last_not_of('*') != std::string::npos);
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
const std::string &NameSoFar,
bool IgnoreName, bool namedContext) {
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::BoolTyID: return Out << "bool " << NameSoFar;
case Type::UByteTyID: return Out << "unsigned char " << NameSoFar;
case Type::SByteTyID: return Out << "signed char " << NameSoFar;
case Type::UShortTyID: return Out << "unsigned short " << NameSoFar;
case Type::ShortTyID: return Out << "short " << NameSoFar;
case Type::UIntTyID: return Out << "unsigned " << NameSoFar;
case Type::IntTyID: return Out << "int " << NameSoFar;
case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar;
case Type::LongTyID: return Out << "signed long long " << NameSoFar;
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
default :
std::cerr << "Unknown primitive type: " << Ty << "\n";
abort();
}
// Check to see if the type is named.
if (!IgnoreName || isa<OpaqueType>(Ty)) {
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) {
return Out << I->second << " " << NameSoFar;
}
}
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<FunctionType>(Ty);
std::stringstream FunctionInnards;
FunctionInnards << " (" << NameSoFar << ") (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
FunctionInnards << ", ";
printType(FunctionInnards, *I, "");
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
FunctionInnards << ", ...";
} else if (MTy->getParamTypes().empty()) {
FunctionInnards << "void";
}
FunctionInnards << ")";
std::string tstr = FunctionInnards.str();
printType(Out, MTy->getReturnType(), tstr);
return Out;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Out << " ";
printType(Out, *I, "field" + utostr(Idx++));
Out << ";\n";
}
return Out << "}";
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
// Do not need parens around "* NameSoFar" if NameSoFar consists only
// of zero or more '*' chars *and* this is not an unnamed pointer type
// such as the result type in a cast statement. Otherwise, enclose in ( ).
if (ptrTypeNameNeedsParens(NameSoFar) || !namedContext ||
PTy->getElementType()->getPrimitiveID() == Type::ArrayTyID)
ptrName = "(" + ptrName + ")"; //
return printType(Out, PTy->getElementType(), ptrName);
}Out <<"--";
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
return printType(Out, ATy->getElementType(),
NameSoFar + "[" + utostr(NumElements) + "]");
}
case Type::OpaqueTyID: {
static int Count = 0;
std::string TyName = "struct opaque_" + itostr(Count++);
assert(TypeNames.find(Ty) == TypeNames.end());
TypeNames[Ty] = TyName;
return Out << TyName << " " << NameSoFar;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
abort();
}
return Out;
}
void CWriter::printConstantArray(ConstantArray *CPA) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CPA->getType()->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
isString = false;
if (isString) {
Out << "\"";
// Keep track of whether the last number was a hexadecimal escape
bool LastWasHex = false;
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
// Print it out literally if it is a printable character. The only thing
// to be careful about is when the last letter output was a hex escape
// code, in which case we have to be careful not to print out hex digits
// explicitly (the C compiler thinks it is a continuation of the previous
// character, sheesh...)
//
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
LastWasHex = false;
if (C == '"' || C == '\\')
Out << "\\" << C;
else
Out << C;
} else {
LastWasHex = false;
switch (C) {
case '\n': Out << "\\n"; break;
case '\t': Out << "\\t"; break;
case '\r': Out << "\\r"; break;
case '\v': Out << "\\v"; break;
case '\a': Out << "\\a"; break;
case '\"': Out << "\\\""; break;
case '\'': Out << "\\\'"; break;
default:
Out << "\\x";
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
LastWasHex = true;
break;
}
}
}
Out << "\"";
} else {
Out << "{";
if (CPA->getNumOperands()) {
Out << " ";
printConstant(cast<Constant>(CPA->getOperand(0)));
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPA->getOperand(i)));
}
}
Out << " }";
}
}
/// FPCSafeToPrint - Returns true if we may assume that CFP may be
/// written out textually as a double (rather than as a reference to a
/// stack-allocated variable). We decide this by converting CFP to a
/// string and back into a double, and then checking whether the
/// conversion results in a bit-equal double to the original value of
/// CFP. This depends on us and the target C compiler agreeing on the
/// conversion process (which is pretty likely since we only deal in
/// IEEE FP.) This is adapted from similar code in
/// lib/VMCore/AsmWriter.cpp:WriteConstantInt().
static bool FPCSafeToPrint (const ConstantFP *CFP) {
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return (atof(StrVal.c_str()) == CFP->getValue());
return false;
}
// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
switch (CE->getOpcode()) {
case Instruction::Cast:
Out << "((";
printType(Out, CPV->getType());
Out << ")";
printConstant(CE->getOperand(0));
Out << ")";
return;
case Instruction::GetElementPtr:
Out << "(&(";
printIndexingExpression(CE->getOperand(0),
CPV->op_begin()+1, CPV->op_end());
Out << "))";
return;
case Instruction::Add:
Out << "(";
printConstant(CE->getOperand(0));
Out << " + ";
printConstant(CE->getOperand(1));
Out << ")";
return;
case Instruction::Sub:
Out << "(";
printConstant(CE->getOperand(0));
Out << " - ";
printConstant(CE->getOperand(1));
Out << ")";
return;
default:
std::cerr << "CWriter Error: Unhandled constant expression: "
<< CE << "\n";
abort();
}
}
switch (CPV->getType()->getPrimitiveID()) {
case Type::BoolTyID:
Out << (CPV == ConstantBool::False ? "0" : "1"); break;
case Type::SByteTyID:
case Type::ShortTyID:
Out << cast<ConstantSInt>(CPV)->getValue(); break;
case Type::IntTyID:
if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000)
Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning
else
Out << cast<ConstantSInt>(CPV)->getValue();
break;
case Type::LongTyID:
Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;
case Type::UByteTyID:
case Type::UShortTyID:
Out << cast<ConstantUInt>(CPV)->getValue(); break;
case Type::UIntTyID:
Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
case Type::ULongTyID:
Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;
case Type::FloatTyID:
case Type::DoubleTyID: {
ConstantFP *FPC = cast<ConstantFP>(CPV);
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FloatConstant" << I->second << ")";
} else {
if (FPCSafeToPrint (FPC)) {
Out << ftostr (FPC->getValue ());
} else {
Out << FPC->getValue(); // Who knows? Give it our best shot...
}
}
break;
}
case Type::ArrayTyID:
printConstantArray(cast<ConstantArray>(CPV));
break;
case Type::StructTyID: {
Out << "{";
if (CPV->getNumOperands()) {
Out << " ";
printConstant(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPV->getOperand(i)));
}
}
Out << " }";
break;
}
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(Out, CPV->getType());
Out << ")/*NULL*/0)";
break;
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
writeOperand(CPR->getValue());
break;
}
// FALL THROUGH
default:
std::cerr << "Unknown constant type: " << CPV << "\n";
abort();
}
}
void CWriter::writeOperandInternal(Value *Operand) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
// Should we inline this instruction to build a tree?
Out << "(";
visit(*I);
Out << ")";
return;
}
if (Operand->hasName()) {
Out << getValueName(Operand);
} else if (Constant *CPV = dyn_cast<Constant>(Operand)) {
printConstant(CPV);
} else {
int Slot = Table->getValSlot(Operand);
assert(Slot >= 0 && "Malformed LLVM!");
Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID();
}
}
void CWriter::writeOperand(Value *Operand) {
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Out << "(&"; // Global variables are references as their addresses by llvm
writeOperandInternal(Operand);
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Out << ")";
}
// nameAllUsedStructureTypes - If there are structure types in the module that
// are used but do not have names assigned to them in the symbol table yet then
// we assign them names now.
//
bool CWriter::nameAllUsedStructureTypes(Module &M) {
// Get a set of types that are used by the program...
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
// Loop over the module symbol table, removing types from UT that are already
// named.
//
SymbolTable &MST = M.getSymbolTable();
if (MST.find(Type::TypeTy) != MST.end())
for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy),
E = MST.type_end(Type::TypeTy); I != E; ++I)
UT.erase(cast<Type>(I->second));
// UT now contains types that are not named. Loop over it, naming structure
// types.
//
bool Changed = false;
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
I != E; ++I)
if (const StructType *ST = dyn_cast<StructType>(*I)) {
((Value*)ST)->setName("unnamed", &MST);
Changed = true;
}
return Changed;
}
static void generateAllocaDecl(std::ostream& Out) {
// On SunOS, we need to insert the alloca macro & proto for the builtin.
Out << "#ifdef sun\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#else\n"
<< "#ifndef __FreeBSD__\n"
<< "#include <alloca.h>\n"
<< "#endif\n"
<< "#endif\n\n";
}
void CWriter::printModule(Module *M) {
// Calculate which global values have names that will collide when we throw
// away type information.
{ // Scope to delete the FoundNames set when we are done with it...
std::set<std::string> FoundNames;
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (I->hasName()) // If the global has a name...
if (FoundNames.count(I->getName())) // And the name is already used
MangledGlobals.insert(I); // Mangle the name
else
FoundNames.insert(I->getName()); // Otherwise, keep track of name
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
if (I->hasName()) // If the global has a name...
if (FoundNames.count(I->getName())) // And the name is already used
MangledGlobals.insert(I); // Mangle the name
else
FoundNames.insert(I->getName()); // Otherwise, keep track of name
}
// get declaration for alloca
Out << "/* Provide Declarations */\n";
generateAllocaDecl(Out);
Out << "#include <stdarg.h>\n";
Out << "#include <setjmp.h>\n";
// Provide a definition for `bool' if not compiling with a C++ compiler.
Out << "\n"
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
<< "\n\n/* Support for floating point constants */\n"
<< "typedef unsigned long long ConstantDoubleTy;\n"
<< "typedef unsigned int ConstantFloatTy;\n"
<< "\n\n/* Global Declarations */\n";
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
// Loop over the symbol table, emitting all named constants...
printSymbolTable(M->getSymbolTable());
// Global variable declarations...
if (!M->gempty()) {
Out << "\n/* External Global Variable Declarations */\n";
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
if (I->hasExternalLinkage()) {
Out << "extern ";
printType(Out, I->getType()->getElementType(), getValueName(I));
Out << ";\n";
}
}
}
// Function declarations
if (!M->empty()) {
Out << "\n/* Function Declarations */\n";
needsMalloc = true;
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
// If the function is external and the name collides don't print it.
// Sometimes the bytecode likes to have multiple "declarations" for
// external functions
if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) &&
!I->getIntrinsicID()) {
printFunctionSignature(I, true);
Out << ";\n";
}
}
}
// Print Malloc prototype if needed
if (needsMalloc){
Out << "\n/* Malloc to make sun happy */\n";
Out << "extern void * malloc(size_t);\n\n";
}
// Output the global variable declarations
if (!M->gempty()) {
Out << "\n\n/* Global Variable Declarations */\n";
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
if (!I->isExternal()) {
Out << "extern ";
printType(Out, I->getType()->getElementType(), getValueName(I));
Out << ";\n";
}
}
// Output the global variable definitions and contents...
if (!M->gempty()) {
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
if (!I->isExternal()) {
if (I->hasInternalLinkage())
Out << "static ";
printType(Out, I->getType()->getElementType(), getValueName(I));
if (!I->getInitializer()->isNullValue()) {
Out << " = " ;
writeOperand(I->getInitializer());
}
Out << ";\n";
}
}
// Output all of the functions...
if (!M->empty()) {
Out << "\n\n/* Function Bodies */\n";
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit it's declaration...
///
void CWriter::printSymbolTable(const SymbolTable &ST) {
// If there are no type names, exit early.
if (ST.find(Type::TypeTy) == ST.end())
return;
// We are only interested in the type plane of the symbol table...
SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy);
SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy);
// Print out forward declarations for structure types before anything else!
Out << "/* Structure forward decls */\n";
for (; I != End; ++I)
if (const Type *STy = dyn_cast<StructType>(I->second)) {
std::string Name = "struct l_" + makeNameProper(I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(STy, Name));
}
Out << "\n";
// Now we can print out typedefs...
Out << "/* Typedefs */\n";
for (I = ST.type_begin(Type::TypeTy); I != End; ++I) {
const Type *Ty = cast<Type>(I->second);
std::string Name = "l_" + makeNameProper(I->first);
Out << "typedef ";
printType(Out, Ty, Name);
Out << ";\n";
}
Out << "\n";
// Keep track of which structures have been printed so far...
std::set<const StructType *> StructPrinted;
// Loop over all structures then push them into the stack so they are
// printed in the correct order.
//
Out << "/* Structure contents */\n";
for (I = ST.type_begin(Type::TypeTy); I != End; ++I)
if (const StructType *STy = dyn_cast<StructType>(I->second))
printContainedStructs(STy, StructPrinted);
}
// Push the struct onto the stack and recursively push all structs
// this one depends on.
void CWriter::printContainedStructs(const Type *Ty,
std::set<const StructType*> &StructPrinted){
if (const StructType *STy = dyn_cast<StructType>(Ty)){
//Check to see if we have already printed this struct
if (StructPrinted.count(STy) == 0) {
// Print all contained types first...
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
const Type *Ty1 = I->get();
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
printContainedStructs(*I, StructPrinted);
}
//Print structure type out..
StructPrinted.insert(STy);
std::string Name = TypeNames[STy];
printType(Out, STy, Name, true);
Out << ";\n\n";
}
// If it is an array, check contained types and continue
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
const Type *Ty1 = ATy->getElementType();
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
printContainedStructs(Ty1, StructPrinted);
}
}
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
// If the program provides its own malloc prototype we don't need
// to include the general one.
if (getValueName(F) == "malloc")
needsMalloc = false;
if (F->hasInternalLinkage()) Out << "static ";
if (F->hasLinkOnceLinkage()) Out << "inline ";
// Loop over the arguments, printing them...
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
std::stringstream FunctionInnards;
// Print out the name...
FunctionInnards << getValueName(F) << "(";
if (!F->isExternal()) {
if (!F->aempty()) {
std::string ArgName;
if (F->abegin()->hasName() || !Prototype)
ArgName = getValueName(F->abegin());
printType(FunctionInnards, F->afront().getType(), ArgName);
for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
I != E; ++I) {
FunctionInnards << ", ";
if (I->hasName() || !Prototype)
ArgName = getValueName(I);
else
ArgName = "";
printType(FunctionInnards, I->getType(), ArgName);
}
}
} else {
// Loop over the arguments, printing them...
for (FunctionType::ParamTypes::const_iterator I =
FT->getParamTypes().begin(),
E = FT->getParamTypes().end(); I != E; ++I) {
if (I != FT->getParamTypes().begin()) FunctionInnards << ", ";
printType(FunctionInnards, *I);
}
}
// Finish printing arguments... if this is a vararg function, print the ...,
// unless there are no known types, in which case, we just emit ().
//
if (FT->isVarArg() && !FT->getParamTypes().empty()) {
if (FT->getParamTypes().size()) FunctionInnards << ", ";
FunctionInnards << "..."; // Output varargs portion of signature!
}
FunctionInnards << ")";
// Print out the return type and the entire signature for that matter
printType(Out, F->getReturnType(), FunctionInnards.str());
}
void CWriter::printFunction(Function *F) {
if (F->isExternal()) return;
Table->incorporateFunction(F);
printFunctionSignature(F, false);
Out << " {\n";
// print local variable information for the function
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (const AllocaInst *AI = isDirectAlloca(*I)) {
Out << " ";
printType(Out, AI->getAllocatedType(), getValueName(AI));
Out << "; /* Address exposed local */\n";
} else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
Out << " ";
printType(Out, (*I)->getType(), getValueName(*I));
Out << ";\n";
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, (*I)->getType(), getValueName(*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
}
Out << "\n";
// Scan the function for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
unsigned FPCounter = 0;
for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if ((!FPCSafeToPrint(FPC)) // Do not put in FPConstantMap if safe.
&& (FPConstantMap.find(FPC) == FPConstantMap.end())) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy)
Out << " const ConstantDoubleTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec
<< "; /* " << Val << " */\n";
else if (FPC->getType() == Type::FloatTy) {
float fVal = Val;
Out << " const ConstantFloatTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned*)&fVal << std::dec
<< "; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << "\n";
// print the basic blocks
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
BasicBlock *Prev = BB->getPrev();
// Don't print the label for the basic block if there are no uses, or if the
// only terminator use is the precessor basic block's terminator. We have
// to scan the use list because PHI nodes use basic blocks too but do not
// require a label to be generated.
//
bool NeedsLabel = false;
for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
UI != UE; ++UI)
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
if (TI != Prev->getTerminator() ||
isa<SwitchInst>(Prev->getTerminator())) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << getValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
if (II->getType() != Type::VoidTy)
outputLValue(II);
else
Out << " ";
visit(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator...
visit(*BB->getTerminator());
}
Out << "}\n\n";
Table->purgeFunction();
FPConstantMap.clear();
}
// Specific Instruction type classes... note that all of the casts are
// neccesary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << " ";
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
void CWriter::visitSwitchInst(SwitchInst &SI) {
Out << " switch (";
writeOperand(SI.getOperand(0));
Out << ") {\n default:\n";
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
Out << ";\n";
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
Out << " case ";
writeOperand(SI.getOperand(i));
Out << ":\n";
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
printBranchToBlock(SI.getParent(), Succ, 2);
if (Succ == SI.getParent()->getNext())
Out << " break;\n";
}
Out << " }\n";
}
static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) {
// If PHI nodes need copies, we need the copy code...
if (isa<PHINode>(To->front()) ||
From->getNext() != To) // Not directly successor, need goto
return true;
// Otherwise we don't need the code.
return false;
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
for (BasicBlock::iterator I = Succ->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
// now we have to do the printing
Out << std::string(Indent, ' ');
Out << " " << getValueName(I) << "__PHI_TEMPORARY = ";
writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
Out << "; /* for PHI node */\n";
}
if (CurBB->getNext() != Succ) {
Out << std::string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Brach instruction printing - Avoid printing out a brach to a basic block that
// immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not neccesary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks. We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
writeOperand(&I);
Out << "__PHI_TEMPORARY";
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
assert(!isa<PointerType>(I.getType()));
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy)
|| (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy)
|| (I.getType() == Type::FloatTy)) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), "", false, false);
Out << ")(";
}
writeOperand(I.getOperand(0));
switch (I.getOpcode()) {
case Instruction::Add: Out << " + "; break;
case Instruction::Sub: Out << " - "; break;
case Instruction::Mul: Out << "*"; break;
case Instruction::Div: Out << "/"; break;
case Instruction::Rem: Out << "%"; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::SetEQ: Out << " == "; break;
case Instruction::SetNE: Out << " != "; break;
case Instruction::SetLE: Out << " <= "; break;
case Instruction::SetGE: Out << " >= "; break;
case Instruction::SetLT: Out << " < "; break;
case Instruction::SetGT: Out << " > "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::Shr : Out << " >> "; break;
default: std::cerr << "Invalid operator type!" << I; abort();
}
writeOperand(I.getOperand(1));
if (needsCast) {
Out << "))";
}
}
void CWriter::visitCastInst(CastInst &I) {
if (I.getType() == Type::BoolTy) {
Out << "(";
writeOperand(I.getOperand(0));
Out << " != 0)";
return;
}
Out << "(";
printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false);
Out << ")";
if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() ||
isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) {
// Avoid "cast to pointer from integer of different size" warnings
Out << "(long)";
}
writeOperand(I.getOperand(0));
}
void CWriter::visitCallInst(CallInst &I) {
// Handle intrinsic function calls first...
if (Function *F = I.getCalledFunction())
if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
switch (ID) {
default: assert(0 && "Unknown LLVM intrinsic!");
case LLVMIntrinsic::va_start:
Out << "va_start((va_list)*";
writeOperand(I.getOperand(1));
Out << ", ";
// Output the last argument to the enclosing function...
writeOperand(&I.getParent()->getParent()->aback());
Out << ")";
return;
case LLVMIntrinsic::va_end:
Out << "va_end((va_list)*";
writeOperand(I.getOperand(1));
Out << ")";
return;
case LLVMIntrinsic::va_copy:
Out << "va_copy((va_list)*";
writeOperand(I.getOperand(1));
Out << ", (va_list)";
writeOperand(I.getOperand(2));
Out << ")";
return;
case LLVMIntrinsic::setjmp:
Out << "setjmp((jmp_buf)";
writeOperand(I.getOperand(1));
Out << ")";
return;
case LLVMIntrinsic::longjmp:
Out << "longjmp((jmp_buf)";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ")";
return;
}
}
const PointerType *PTy = cast<PointerType>(I.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
writeOperand(I.getOperand(0));
Out << "(";
if (I.getNumOperands() > 1) {
writeOperand(I.getOperand(1));
for (unsigned op = 2, Eop = I.getNumOperands(); op != Eop; ++op) {
Out << ", ";
writeOperand(I.getOperand(op));
}
}
Out << ")";
}
void CWriter::visitMallocInst(MallocInst &I) {
Out << "(";
printType(Out, I.getType());
Out << ")malloc(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ")";
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ")";
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << "(";
printType(Out, I.getType());
Out << ") alloca(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ")";
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ")";
}
void CWriter::visitFreeInst(FreeInst &I) {
Out << "free(";
writeOperand(I.getOperand(0));
Out << ")";
}
void CWriter::printIndexingExpression(Value *Ptr, User::op_iterator I,
User::op_iterator E) {
bool HasImplicitAddress = false;
// If accessing a global value with no indexing, avoid *(&GV) syndrome
if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
HasImplicitAddress = true;
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
HasImplicitAddress = true;
Ptr = CPR->getValue(); // Get to the global...
} else if (isDirectAlloca(Ptr)) {
HasImplicitAddress = true;
}
if (I == E) {
if (!HasImplicitAddress)
Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
writeOperandInternal(Ptr);
return;
}
const Constant *CI = dyn_cast<Constant>(I);
if (HasImplicitAddress && (!CI || !CI->isNullValue()))
Out << "(&";
writeOperandInternal(Ptr);
if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
Out << ")";
HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
}
assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
"Can only have implicit address with direct accessing");
if (HasImplicitAddress) {
++I;
} else if (CI && CI->isNullValue() && I+1 != E) {
// Print out the -> operator if possible...
if ((*(I+1))->getType() == Type::UByteTy) {
Out << (HasImplicitAddress ? "." : "->");
Out << "field" << cast<ConstantUInt>(*(I+1))->getValue();
I += 2;
}
}
for (; I != E; ++I)
if ((*I)->getType() == Type::LongTy) {
Out << "[";
writeOperand(*I);
Out << "]";
} else {
Out << ".field" << cast<ConstantUInt>(*I)->getValue();
}
}
void CWriter::visitLoadInst(LoadInst &I) {
Out << "*";
writeOperand(I.getOperand(0));
}
void CWriter::visitStoreInst(StoreInst &I) {
Out << "*";
writeOperand(I.getPointerOperand());
Out << " = ";
writeOperand(I.getOperand(0));
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Out << "&";
printIndexingExpression(I.getPointerOperand(), I.idx_begin(), I.idx_end());
}
void CWriter::visitVarArgInst(VarArgInst &I) {
Out << "va_arg((va_list)*";
writeOperand(I.getOperand(0));
Out << ", ";
printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false);
Out << ")";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); }