mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
5209f18c1c
This reverts commit d87b9b81ccb95217181ce75515c6c68bbb408ca4. Post commit review raised concerns, reverting while discussion happens.
2155 lines
66 KiB
C++
2155 lines
66 KiB
C++
//===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the MIPS-specific support for the FastISel class.
|
|
/// Some of the target-specific code is generated by tablegen in the file
|
|
/// MipsGenFastISel.inc, which is #included here.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/MipsABIInfo.h"
|
|
#include "MCTargetDesc/MipsBaseInfo.h"
|
|
#include "MipsCCState.h"
|
|
#include "MipsISelLowering.h"
|
|
#include "MipsInstrInfo.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
#define DEBUG_TYPE "mips-fastisel"
|
|
|
|
using namespace llvm;
|
|
|
|
extern cl::opt<bool> EmitJalrReloc;
|
|
|
|
namespace {
|
|
|
|
class MipsFastISel final : public FastISel {
|
|
|
|
// All possible address modes.
|
|
class Address {
|
|
public:
|
|
using BaseKind = enum { RegBase, FrameIndexBase };
|
|
|
|
private:
|
|
BaseKind Kind = RegBase;
|
|
union {
|
|
unsigned Reg;
|
|
int FI;
|
|
} Base;
|
|
|
|
int64_t Offset = 0;
|
|
|
|
const GlobalValue *GV = nullptr;
|
|
|
|
public:
|
|
// Innocuous defaults for our address.
|
|
Address() { Base.Reg = 0; }
|
|
|
|
void setKind(BaseKind K) { Kind = K; }
|
|
BaseKind getKind() const { return Kind; }
|
|
bool isRegBase() const { return Kind == RegBase; }
|
|
bool isFIBase() const { return Kind == FrameIndexBase; }
|
|
|
|
void setReg(unsigned Reg) {
|
|
assert(isRegBase() && "Invalid base register access!");
|
|
Base.Reg = Reg;
|
|
}
|
|
|
|
unsigned getReg() const {
|
|
assert(isRegBase() && "Invalid base register access!");
|
|
return Base.Reg;
|
|
}
|
|
|
|
void setFI(unsigned FI) {
|
|
assert(isFIBase() && "Invalid base frame index access!");
|
|
Base.FI = FI;
|
|
}
|
|
|
|
unsigned getFI() const {
|
|
assert(isFIBase() && "Invalid base frame index access!");
|
|
return Base.FI;
|
|
}
|
|
|
|
void setOffset(int64_t Offset_) { Offset = Offset_; }
|
|
int64_t getOffset() const { return Offset; }
|
|
void setGlobalValue(const GlobalValue *G) { GV = G; }
|
|
const GlobalValue *getGlobalValue() { return GV; }
|
|
};
|
|
|
|
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const TargetMachine &TM;
|
|
const MipsSubtarget *Subtarget;
|
|
const TargetInstrInfo &TII;
|
|
const TargetLowering &TLI;
|
|
MipsFunctionInfo *MFI;
|
|
|
|
// Convenience variables to avoid some queries.
|
|
LLVMContext *Context;
|
|
|
|
bool fastLowerArguments() override;
|
|
bool fastLowerCall(CallLoweringInfo &CLI) override;
|
|
bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
|
|
|
|
bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
|
|
// floating point but not reject doing fast-isel in other
|
|
// situations
|
|
|
|
private:
|
|
// Selection routines.
|
|
bool selectLogicalOp(const Instruction *I);
|
|
bool selectLoad(const Instruction *I);
|
|
bool selectStore(const Instruction *I);
|
|
bool selectBranch(const Instruction *I);
|
|
bool selectSelect(const Instruction *I);
|
|
bool selectCmp(const Instruction *I);
|
|
bool selectFPExt(const Instruction *I);
|
|
bool selectFPTrunc(const Instruction *I);
|
|
bool selectFPToInt(const Instruction *I, bool IsSigned);
|
|
bool selectRet(const Instruction *I);
|
|
bool selectTrunc(const Instruction *I);
|
|
bool selectIntExt(const Instruction *I);
|
|
bool selectShift(const Instruction *I);
|
|
bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
|
|
|
|
// Utility helper routines.
|
|
bool isTypeLegal(Type *Ty, MVT &VT);
|
|
bool isTypeSupported(Type *Ty, MVT &VT);
|
|
bool isLoadTypeLegal(Type *Ty, MVT &VT);
|
|
bool computeAddress(const Value *Obj, Address &Addr);
|
|
bool computeCallAddress(const Value *V, Address &Addr);
|
|
void simplifyAddress(Address &Addr);
|
|
|
|
// Emit helper routines.
|
|
bool emitCmp(unsigned DestReg, const CmpInst *CI);
|
|
bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
|
|
unsigned Alignment = 0);
|
|
bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
|
|
MachineMemOperand *MMO = nullptr);
|
|
bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
|
|
unsigned Alignment = 0);
|
|
unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
|
|
bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
|
|
|
|
bool IsZExt);
|
|
bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
|
|
|
|
bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
|
|
bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg);
|
|
bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg);
|
|
|
|
unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
|
|
|
|
unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
|
|
const Value *RHS);
|
|
|
|
unsigned materializeFP(const ConstantFP *CFP, MVT VT);
|
|
unsigned materializeGV(const GlobalValue *GV, MVT VT);
|
|
unsigned materializeInt(const Constant *C, MVT VT);
|
|
unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
|
|
unsigned materializeExternalCallSym(MCSymbol *Syn);
|
|
|
|
MachineInstrBuilder emitInst(unsigned Opc) {
|
|
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
|
|
}
|
|
|
|
MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
|
|
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
|
|
DstReg);
|
|
}
|
|
|
|
MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
|
|
unsigned MemReg, int64_t MemOffset) {
|
|
return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
|
|
}
|
|
|
|
MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
|
|
unsigned MemReg, int64_t MemOffset) {
|
|
return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
|
|
}
|
|
|
|
unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, unsigned Op1);
|
|
|
|
// for some reason, this default is not generated by tablegen
|
|
// so we explicitly generate it here.
|
|
unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
|
|
unsigned Op0, uint64_t imm1, uint64_t imm2,
|
|
unsigned Op3) {
|
|
return 0;
|
|
}
|
|
|
|
// Call handling routines.
|
|
private:
|
|
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
|
|
bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
|
|
unsigned &NumBytes);
|
|
bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
|
|
|
|
const MipsABIInfo &getABI() const {
|
|
return static_cast<const MipsTargetMachine &>(TM).getABI();
|
|
}
|
|
|
|
public:
|
|
// Backend specific FastISel code.
|
|
explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo)
|
|
: FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
|
|
Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
|
|
TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
|
|
MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
|
|
Context = &funcInfo.Fn->getContext();
|
|
UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
|
|
}
|
|
|
|
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
|
|
unsigned fastMaterializeConstant(const Constant *C) override;
|
|
bool fastSelectInstruction(const Instruction *I) override;
|
|
|
|
#include "MipsGenFastISel.inc"
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) LLVM_ATTRIBUTE_UNUSED;
|
|
|
|
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
llvm_unreachable("should not be called");
|
|
}
|
|
|
|
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
llvm_unreachable("should not be called");
|
|
}
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
|
|
return CC_MipsO32;
|
|
}
|
|
|
|
unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
|
|
const Value *LHS, const Value *RHS) {
|
|
// Canonicalize immediates to the RHS first.
|
|
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
|
|
std::swap(LHS, RHS);
|
|
|
|
unsigned Opc;
|
|
switch (ISDOpc) {
|
|
case ISD::AND:
|
|
Opc = Mips::AND;
|
|
break;
|
|
case ISD::OR:
|
|
Opc = Mips::OR;
|
|
break;
|
|
case ISD::XOR:
|
|
Opc = Mips::XOR;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected opcode");
|
|
}
|
|
|
|
unsigned LHSReg = getRegForValue(LHS);
|
|
if (!LHSReg)
|
|
return 0;
|
|
|
|
unsigned RHSReg;
|
|
if (const auto *C = dyn_cast<ConstantInt>(RHS))
|
|
RHSReg = materializeInt(C, MVT::i32);
|
|
else
|
|
RHSReg = getRegForValue(RHS);
|
|
if (!RHSReg)
|
|
return 0;
|
|
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!ResultReg)
|
|
return 0;
|
|
|
|
emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
|
|
assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
|
|
"Alloca should always return a pointer.");
|
|
|
|
DenseMap<const AllocaInst *, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
|
|
ResultReg)
|
|
.addFrameIndex(SI->second)
|
|
.addImm(0);
|
|
return ResultReg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
|
|
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
|
|
return 0;
|
|
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
|
|
const ConstantInt *CI = cast<ConstantInt>(C);
|
|
return materialize32BitInt(CI->getZExtValue(), RC);
|
|
}
|
|
|
|
unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
|
|
const TargetRegisterClass *RC) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
|
|
if (isInt<16>(Imm)) {
|
|
unsigned Opc = Mips::ADDiu;
|
|
emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
|
|
return ResultReg;
|
|
} else if (isUInt<16>(Imm)) {
|
|
emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
|
|
return ResultReg;
|
|
}
|
|
unsigned Lo = Imm & 0xFFFF;
|
|
unsigned Hi = (Imm >> 16) & 0xFFFF;
|
|
if (Lo) {
|
|
// Both Lo and Hi have nonzero bits.
|
|
unsigned TmpReg = createResultReg(RC);
|
|
emitInst(Mips::LUi, TmpReg).addImm(Hi);
|
|
emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
|
|
} else {
|
|
emitInst(Mips::LUi, ResultReg).addImm(Hi);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
|
|
if (UnsupportedFPMode)
|
|
return 0;
|
|
int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
if (VT == MVT::f32) {
|
|
const TargetRegisterClass *RC = &Mips::FGR32RegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
|
|
emitInst(Mips::MTC1, DestReg).addReg(TempReg);
|
|
return DestReg;
|
|
} else if (VT == MVT::f64) {
|
|
const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
|
|
unsigned TempReg2 =
|
|
materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
|
|
emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
|
|
return DestReg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
|
|
// For now 32-bit only.
|
|
if (VT != MVT::i32)
|
|
return 0;
|
|
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
bool IsThreadLocal = GVar && GVar->isThreadLocal();
|
|
// TLS not supported at this time.
|
|
if (IsThreadLocal)
|
|
return 0;
|
|
emitInst(Mips::LW, DestReg)
|
|
.addReg(MFI->getGlobalBaseReg(*MF))
|
|
.addGlobalAddress(GV, 0, MipsII::MO_GOT);
|
|
if ((GV->hasInternalLinkage() ||
|
|
(GV->hasLocalLinkage() && !isa<Function>(GV)))) {
|
|
unsigned TempReg = createResultReg(RC);
|
|
emitInst(Mips::ADDiu, TempReg)
|
|
.addReg(DestReg)
|
|
.addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
|
|
DestReg = TempReg;
|
|
}
|
|
return DestReg;
|
|
}
|
|
|
|
unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
|
|
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
emitInst(Mips::LW, DestReg)
|
|
.addReg(MFI->getGlobalBaseReg(*MF))
|
|
.addSym(Sym, MipsII::MO_GOT);
|
|
return DestReg;
|
|
}
|
|
|
|
// Materialize a constant into a register, and return the register
|
|
// number (or zero if we failed to handle it).
|
|
unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
|
|
EVT CEVT = TLI.getValueType(DL, C->getType(), true);
|
|
|
|
// Only handle simple types.
|
|
if (!CEVT.isSimple())
|
|
return 0;
|
|
MVT VT = CEVT.getSimpleVT();
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
|
return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
|
|
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
|
return materializeGV(GV, VT);
|
|
else if (isa<ConstantInt>(C))
|
|
return materializeInt(C, VT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
|
|
const User *U = nullptr;
|
|
unsigned Opcode = Instruction::UserOp1;
|
|
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
|
|
// Don't walk into other basic blocks unless the object is an alloca from
|
|
// another block, otherwise it may not have a virtual register assigned.
|
|
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
|
|
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
|
|
Opcode = I->getOpcode();
|
|
U = I;
|
|
}
|
|
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
|
|
Opcode = C->getOpcode();
|
|
U = C;
|
|
}
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::BitCast:
|
|
// Look through bitcasts.
|
|
return computeAddress(U->getOperand(0), Addr);
|
|
case Instruction::GetElementPtr: {
|
|
Address SavedAddr = Addr;
|
|
int64_t TmpOffset = Addr.getOffset();
|
|
// Iterate through the GEP folding the constants into offsets where
|
|
// we can.
|
|
gep_type_iterator GTI = gep_type_begin(U);
|
|
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
|
|
++i, ++GTI) {
|
|
const Value *Op = *i;
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
|
|
TmpOffset += SL->getElementOffset(Idx);
|
|
} else {
|
|
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
|
|
while (true) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
|
|
// Constant-offset addressing.
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
break;
|
|
}
|
|
if (canFoldAddIntoGEP(U, Op)) {
|
|
// A compatible add with a constant operand. Fold the constant.
|
|
ConstantInt *CI =
|
|
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
// Iterate on the other operand.
|
|
Op = cast<AddOperator>(Op)->getOperand(0);
|
|
continue;
|
|
}
|
|
// Unsupported
|
|
goto unsupported_gep;
|
|
}
|
|
}
|
|
}
|
|
// Try to grab the base operand now.
|
|
Addr.setOffset(TmpOffset);
|
|
if (computeAddress(U->getOperand(0), Addr))
|
|
return true;
|
|
// We failed, restore everything and try the other options.
|
|
Addr = SavedAddr;
|
|
unsupported_gep:
|
|
break;
|
|
}
|
|
case Instruction::Alloca: {
|
|
const AllocaInst *AI = cast<AllocaInst>(Obj);
|
|
DenseMap<const AllocaInst *, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
Addr.setKind(Address::FrameIndexBase);
|
|
Addr.setFI(SI->second);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
Addr.setReg(getRegForValue(Obj));
|
|
return Addr.getReg() != 0;
|
|
}
|
|
|
|
bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
|
|
const User *U = nullptr;
|
|
unsigned Opcode = Instruction::UserOp1;
|
|
|
|
if (const auto *I = dyn_cast<Instruction>(V)) {
|
|
// Check if the value is defined in the same basic block. This information
|
|
// is crucial to know whether or not folding an operand is valid.
|
|
if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
|
|
Opcode = I->getOpcode();
|
|
U = I;
|
|
}
|
|
} else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
|
|
Opcode = C->getOpcode();
|
|
U = C;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::BitCast:
|
|
// Look past bitcasts if its operand is in the same BB.
|
|
return computeCallAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::IntToPtr:
|
|
// Look past no-op inttoptrs if its operand is in the same BB.
|
|
if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
|
|
TLI.getPointerTy(DL))
|
|
return computeCallAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::PtrToInt:
|
|
// Look past no-op ptrtoints if its operand is in the same BB.
|
|
if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
|
|
return computeCallAddress(U->getOperand(0), Addr);
|
|
break;
|
|
}
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Addr.setGlobalValue(GV);
|
|
return true;
|
|
}
|
|
|
|
// If all else fails, try to materialize the value in a register.
|
|
if (!Addr.getGlobalValue()) {
|
|
Addr.setReg(getRegForValue(V));
|
|
return Addr.getReg() != 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
|
|
EVT evt = TLI.getValueType(DL, Ty, true);
|
|
// Only handle simple types.
|
|
if (evt == MVT::Other || !evt.isSimple())
|
|
return false;
|
|
VT = evt.getSimpleVT();
|
|
|
|
// Handle all legal types, i.e. a register that will directly hold this
|
|
// value.
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
|
|
bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
|
|
if (Ty->isVectorTy())
|
|
return false;
|
|
|
|
if (isTypeLegal(Ty, VT))
|
|
return true;
|
|
|
|
// If this is a type than can be sign or zero-extended to a basic operation
|
|
// go ahead and accept it now.
|
|
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
|
|
if (isTypeLegal(Ty, VT))
|
|
return true;
|
|
// We will extend this in a later patch:
|
|
// If this is a type than can be sign or zero-extended to a basic operation
|
|
// go ahead and accept it now.
|
|
if (VT == MVT::i8 || VT == MVT::i16)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Because of how EmitCmp is called with fast-isel, you can
|
|
// end up with redundant "andi" instructions after the sequences emitted below.
|
|
// We should try and solve this issue in the future.
|
|
//
|
|
bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
|
|
const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
|
|
bool IsUnsigned = CI->isUnsigned();
|
|
unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
|
|
if (LeftReg == 0)
|
|
return false;
|
|
unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
|
|
if (RightReg == 0)
|
|
return false;
|
|
CmpInst::Predicate P = CI->getPredicate();
|
|
|
|
switch (P) {
|
|
default:
|
|
return false;
|
|
case CmpInst::ICMP_EQ: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
|
|
emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_NE: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
|
|
emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_UGT:
|
|
emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
|
|
break;
|
|
case CmpInst::ICMP_ULT:
|
|
emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
|
|
break;
|
|
case CmpInst::ICMP_UGE: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
|
|
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_ULE: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
|
|
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_SGT:
|
|
emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
|
|
break;
|
|
case CmpInst::ICMP_SLT:
|
|
emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
|
|
break;
|
|
case CmpInst::ICMP_SGE: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
|
|
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
|
|
break;
|
|
}
|
|
case CmpInst::ICMP_SLE: {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
|
|
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
|
|
break;
|
|
}
|
|
case CmpInst::FCMP_OEQ:
|
|
case CmpInst::FCMP_UNE:
|
|
case CmpInst::FCMP_OLT:
|
|
case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_OGT:
|
|
case CmpInst::FCMP_OGE: {
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
bool IsFloat = Left->getType()->isFloatTy();
|
|
bool IsDouble = Left->getType()->isDoubleTy();
|
|
if (!IsFloat && !IsDouble)
|
|
return false;
|
|
unsigned Opc, CondMovOpc;
|
|
switch (P) {
|
|
case CmpInst::FCMP_OEQ:
|
|
Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
|
|
CondMovOpc = Mips::MOVT_I;
|
|
break;
|
|
case CmpInst::FCMP_UNE:
|
|
Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
|
|
CondMovOpc = Mips::MOVF_I;
|
|
break;
|
|
case CmpInst::FCMP_OLT:
|
|
Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
|
|
CondMovOpc = Mips::MOVT_I;
|
|
break;
|
|
case CmpInst::FCMP_OLE:
|
|
Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
|
|
CondMovOpc = Mips::MOVT_I;
|
|
break;
|
|
case CmpInst::FCMP_OGT:
|
|
Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
|
|
CondMovOpc = Mips::MOVF_I;
|
|
break;
|
|
case CmpInst::FCMP_OGE:
|
|
Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
|
|
CondMovOpc = Mips::MOVF_I;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Only switching of a subset of CCs.");
|
|
}
|
|
unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
|
|
unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
|
|
emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
|
|
emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
|
|
.addReg(RightReg);
|
|
emitInst(CondMovOpc, ResultReg)
|
|
.addReg(RegWithOne)
|
|
.addReg(Mips::FCC0)
|
|
.addReg(RegWithZero);
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
|
|
unsigned Alignment) {
|
|
//
|
|
// more cases will be handled here in following patches.
|
|
//
|
|
unsigned Opc;
|
|
switch (VT.SimpleTy) {
|
|
case MVT::i32:
|
|
ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
Opc = Mips::LW;
|
|
break;
|
|
case MVT::i16:
|
|
ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
Opc = Mips::LHu;
|
|
break;
|
|
case MVT::i8:
|
|
ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
Opc = Mips::LBu;
|
|
break;
|
|
case MVT::f32:
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
ResultReg = createResultReg(&Mips::FGR32RegClass);
|
|
Opc = Mips::LWC1;
|
|
break;
|
|
case MVT::f64:
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
ResultReg = createResultReg(&Mips::AFGR64RegClass);
|
|
Opc = Mips::LDC1;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (Addr.isRegBase()) {
|
|
simplifyAddress(Addr);
|
|
emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
|
|
return true;
|
|
}
|
|
if (Addr.isFIBase()) {
|
|
unsigned FI = Addr.getFI();
|
|
int64_t Offset = Addr.getOffset();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), Align(4));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(Offset)
|
|
.addMemOperand(MMO);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
|
|
unsigned Alignment) {
|
|
//
|
|
// more cases will be handled here in following patches.
|
|
//
|
|
unsigned Opc;
|
|
switch (VT.SimpleTy) {
|
|
case MVT::i8:
|
|
Opc = Mips::SB;
|
|
break;
|
|
case MVT::i16:
|
|
Opc = Mips::SH;
|
|
break;
|
|
case MVT::i32:
|
|
Opc = Mips::SW;
|
|
break;
|
|
case MVT::f32:
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
Opc = Mips::SWC1;
|
|
break;
|
|
case MVT::f64:
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
Opc = Mips::SDC1;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (Addr.isRegBase()) {
|
|
simplifyAddress(Addr);
|
|
emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
|
|
return true;
|
|
}
|
|
if (Addr.isFIBase()) {
|
|
unsigned FI = Addr.getFI();
|
|
int64_t Offset = Addr.getOffset();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), Align(4));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
|
|
.addReg(SrcReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(Offset)
|
|
.addMemOperand(MMO);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MipsFastISel::selectLogicalOp(const Instruction *I) {
|
|
MVT VT;
|
|
if (!isTypeSupported(I->getType(), VT))
|
|
return false;
|
|
|
|
unsigned ResultReg;
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
case Instruction::And:
|
|
ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
|
|
break;
|
|
case Instruction::Or:
|
|
ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
|
|
break;
|
|
case Instruction::Xor:
|
|
ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
|
|
break;
|
|
}
|
|
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectLoad(const Instruction *I) {
|
|
// Atomic loads need special handling.
|
|
if (cast<LoadInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(I->getType(), VT))
|
|
return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!computeAddress(I->getOperand(0), Addr))
|
|
return false;
|
|
|
|
unsigned ResultReg;
|
|
if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
|
|
return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectStore(const Instruction *I) {
|
|
Value *Op0 = I->getOperand(0);
|
|
unsigned SrcReg = 0;
|
|
|
|
// Atomic stores need special handling.
|
|
if (cast<StoreInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
|
|
return false;
|
|
|
|
// Get the value to be stored into a register.
|
|
SrcReg = getRegForValue(Op0);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!computeAddress(I->getOperand(1), Addr))
|
|
return false;
|
|
|
|
if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// This can cause a redundant sltiu to be generated.
|
|
// FIXME: try and eliminate this in a future patch.
|
|
bool MipsFastISel::selectBranch(const Instruction *I) {
|
|
const BranchInst *BI = cast<BranchInst>(I);
|
|
MachineBasicBlock *BrBB = FuncInfo.MBB;
|
|
//
|
|
// TBB is the basic block for the case where the comparison is true.
|
|
// FBB is the basic block for the case where the comparison is false.
|
|
// if (cond) goto TBB
|
|
// goto FBB
|
|
// TBB:
|
|
//
|
|
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
|
|
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
|
|
|
|
// Fold the common case of a conditional branch with a comparison
|
|
// in the same block.
|
|
unsigned ZExtCondReg = 0;
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
|
|
if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
|
|
ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!emitCmp(ZExtCondReg, CI))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// For the general case, we need to mask with 1.
|
|
if (ZExtCondReg == 0) {
|
|
unsigned CondReg = getRegForValue(BI->getCondition());
|
|
if (CondReg == 0)
|
|
return false;
|
|
|
|
ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
|
|
if (ZExtCondReg == 0)
|
|
return false;
|
|
}
|
|
|
|
BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
|
|
.addReg(ZExtCondReg)
|
|
.addMBB(TBB);
|
|
finishCondBranch(BI->getParent(), TBB, FBB);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectCmp(const Instruction *I) {
|
|
const CmpInst *CI = cast<CmpInst>(I);
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!emitCmp(ResultReg, CI))
|
|
return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point extend instruction.
|
|
bool MipsFastISel::selectFPExt(const Instruction *I) {
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::f32 || DestVT != MVT::f64)
|
|
return false;
|
|
|
|
unsigned SrcReg =
|
|
getRegForValue(Src); // this must be a 32bit floating point register class
|
|
// maybe we should handle this differently
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
|
|
emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectSelect(const Instruction *I) {
|
|
assert(isa<SelectInst>(I) && "Expected a select instruction.");
|
|
|
|
LLVM_DEBUG(dbgs() << "selectSelect\n");
|
|
|
|
MVT VT;
|
|
if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
|
|
LLVM_DEBUG(
|
|
dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned CondMovOpc;
|
|
const TargetRegisterClass *RC;
|
|
|
|
if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
|
|
CondMovOpc = Mips::MOVN_I_I;
|
|
RC = &Mips::GPR32RegClass;
|
|
} else if (VT == MVT::f32) {
|
|
CondMovOpc = Mips::MOVN_I_S;
|
|
RC = &Mips::FGR32RegClass;
|
|
} else if (VT == MVT::f64) {
|
|
CondMovOpc = Mips::MOVN_I_D32;
|
|
RC = &Mips::AFGR64RegClass;
|
|
} else
|
|
return false;
|
|
|
|
const SelectInst *SI = cast<SelectInst>(I);
|
|
const Value *Cond = SI->getCondition();
|
|
unsigned Src1Reg = getRegForValue(SI->getTrueValue());
|
|
unsigned Src2Reg = getRegForValue(SI->getFalseValue());
|
|
unsigned CondReg = getRegForValue(Cond);
|
|
|
|
if (!Src1Reg || !Src2Reg || !CondReg)
|
|
return false;
|
|
|
|
unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!ZExtCondReg)
|
|
return false;
|
|
|
|
if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
|
|
return false;
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
unsigned TempReg = createResultReg(RC);
|
|
|
|
if (!ResultReg || !TempReg)
|
|
return false;
|
|
|
|
emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
|
|
emitInst(CondMovOpc, ResultReg)
|
|
.addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point truncate instruction.
|
|
bool MipsFastISel::selectFPTrunc(const Instruction *I) {
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::f64 || DestVT != MVT::f32)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
|
|
if (!DestReg)
|
|
return false;
|
|
|
|
emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point-to-integer conversion.
|
|
bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
|
|
if (UnsupportedFPMode)
|
|
return false;
|
|
MVT DstVT, SrcVT;
|
|
if (!IsSigned)
|
|
return false; // We don't handle this case yet. There is no native
|
|
// instruction for this but it can be synthesized.
|
|
Type *DstTy = I->getType();
|
|
if (!isTypeLegal(DstTy, DstVT))
|
|
return false;
|
|
|
|
if (DstVT != MVT::i32)
|
|
return false;
|
|
|
|
Value *Src = I->getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
if (!isTypeLegal(SrcTy, SrcVT))
|
|
return false;
|
|
|
|
if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// Determine the opcode for the conversion, which takes place
|
|
// entirely within FPRs.
|
|
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
|
|
unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
|
|
unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
|
|
|
|
// Generate the convert.
|
|
emitInst(Opc, TempReg).addReg(SrcReg);
|
|
emitInst(Mips::MFC1, DestReg).addReg(TempReg);
|
|
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<MVT> &OutVTs,
|
|
unsigned &NumBytes) {
|
|
CallingConv::ID CC = CLI.CallConv;
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
|
|
CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
NumBytes = CCInfo.getNextStackOffset();
|
|
// This is the minimum argument area used for A0-A3.
|
|
if (NumBytes < 16)
|
|
NumBytes = 16;
|
|
|
|
emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
|
|
// Process the args.
|
|
MVT firstMVT;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
const Value *ArgVal = CLI.OutVals[VA.getValNo()];
|
|
MVT ArgVT = OutVTs[VA.getValNo()];
|
|
|
|
if (i == 0) {
|
|
firstMVT = ArgVT;
|
|
if (ArgVT == MVT::f32) {
|
|
VA.convertToReg(Mips::F12);
|
|
} else if (ArgVT == MVT::f64) {
|
|
if (Subtarget->isFP64bit())
|
|
VA.convertToReg(Mips::D6_64);
|
|
else
|
|
VA.convertToReg(Mips::D6);
|
|
}
|
|
} else if (i == 1) {
|
|
if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
|
|
if (ArgVT == MVT::f32) {
|
|
VA.convertToReg(Mips::F14);
|
|
} else if (ArgVT == MVT::f64) {
|
|
if (Subtarget->isFP64bit())
|
|
VA.convertToReg(Mips::D7_64);
|
|
else
|
|
VA.convertToReg(Mips::D7);
|
|
}
|
|
}
|
|
}
|
|
if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
|
|
(ArgVT == MVT::i8)) &&
|
|
VA.isMemLoc()) {
|
|
switch (VA.getLocMemOffset()) {
|
|
case 0:
|
|
VA.convertToReg(Mips::A0);
|
|
break;
|
|
case 4:
|
|
VA.convertToReg(Mips::A1);
|
|
break;
|
|
case 8:
|
|
VA.convertToReg(Mips::A2);
|
|
break;
|
|
case 12:
|
|
VA.convertToReg(Mips::A3);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
unsigned ArgReg = getRegForValue(ArgVal);
|
|
if (!ArgReg)
|
|
return false;
|
|
|
|
// Handle arg promotion: SExt, ZExt, AExt.
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::SExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
MVT SrcVT = ArgVT;
|
|
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
|
|
if (!ArgReg)
|
|
return false;
|
|
break;
|
|
}
|
|
case CCValAssign::ZExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
MVT SrcVT = ArgVT;
|
|
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
|
|
if (!ArgReg)
|
|
return false;
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown arg promotion!");
|
|
}
|
|
|
|
// Now copy/store arg to correct locations.
|
|
if (VA.isRegLoc() && !VA.needsCustom()) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
|
|
CLI.OutRegs.push_back(VA.getLocReg());
|
|
} else if (VA.needsCustom()) {
|
|
llvm_unreachable("Mips does not use custom args.");
|
|
return false;
|
|
} else {
|
|
//
|
|
// FIXME: This path will currently return false. It was copied
|
|
// from the AArch64 port and should be essentially fine for Mips too.
|
|
// The work to finish up this path will be done in a follow-on patch.
|
|
//
|
|
assert(VA.isMemLoc() && "Assuming store on stack.");
|
|
// Don't emit stores for undef values.
|
|
if (isa<UndefValue>(ArgVal))
|
|
continue;
|
|
|
|
// Need to store on the stack.
|
|
// FIXME: This alignment is incorrect but this path is disabled
|
|
// for now (will return false). We need to determine the right alignment
|
|
// based on the normal alignment for the underlying machine type.
|
|
//
|
|
unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
|
|
|
|
unsigned BEAlign = 0;
|
|
if (ArgSize < 8 && !Subtarget->isLittle())
|
|
BEAlign = 8 - ArgSize;
|
|
|
|
Address Addr;
|
|
Addr.setKind(Address::RegBase);
|
|
Addr.setReg(Mips::SP);
|
|
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
|
|
|
|
Align Alignment = DL.getABITypeAlign(ArgVal->getType());
|
|
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
|
MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
|
|
MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
|
|
(void)(MMO);
|
|
// if (!emitStore(ArgVT, ArgReg, Addr, MMO))
|
|
return false; // can't store on the stack yet.
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
|
|
unsigned NumBytes) {
|
|
CallingConv::ID CC = CLI.CallConv;
|
|
emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
|
|
if (RetVT != MVT::isVoid) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
|
|
|
|
CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
|
|
CLI.Symbol ? CLI.Symbol->getName().data()
|
|
: nullptr);
|
|
|
|
// Only handle a single return value.
|
|
if (RVLocs.size() != 1)
|
|
return false;
|
|
// Copy all of the result registers out of their specified physreg.
|
|
MVT CopyVT = RVLocs[0].getValVT();
|
|
// Special handling for extended integers.
|
|
if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
|
|
CopyVT = MVT::i32;
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
|
|
if (!ResultReg)
|
|
return false;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY),
|
|
ResultReg).addReg(RVLocs[0].getLocReg());
|
|
CLI.InRegs.push_back(RVLocs[0].getLocReg());
|
|
|
|
CLI.ResultReg = ResultReg;
|
|
CLI.NumResultRegs = 1;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::fastLowerArguments() {
|
|
LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
|
|
|
|
if (!FuncInfo.CanLowerReturn) {
|
|
LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
|
|
return false;
|
|
}
|
|
|
|
const Function *F = FuncInfo.Fn;
|
|
if (F->isVarArg()) {
|
|
LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
|
|
return false;
|
|
}
|
|
|
|
CallingConv::ID CC = F->getCallingConv();
|
|
if (CC != CallingConv::C) {
|
|
LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
|
|
return false;
|
|
}
|
|
|
|
std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
|
|
Mips::A3}};
|
|
std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
|
|
std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
|
|
auto NextGPR32 = GPR32ArgRegs.begin();
|
|
auto NextFGR32 = FGR32ArgRegs.begin();
|
|
auto NextAFGR64 = AFGR64ArgRegs.begin();
|
|
|
|
struct AllocatedReg {
|
|
const TargetRegisterClass *RC;
|
|
unsigned Reg;
|
|
AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
|
|
: RC(RC), Reg(Reg) {}
|
|
};
|
|
|
|
// Only handle simple cases. i.e. All arguments are directly mapped to
|
|
// registers of the appropriate type.
|
|
SmallVector<AllocatedReg, 4> Allocation;
|
|
for (const auto &FormalArg : F->args()) {
|
|
if (FormalArg.hasAttribute(Attribute::InReg) ||
|
|
FormalArg.hasAttribute(Attribute::StructRet) ||
|
|
FormalArg.hasAttribute(Attribute::ByVal)) {
|
|
LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
|
|
return false;
|
|
}
|
|
|
|
Type *ArgTy = FormalArg.getType();
|
|
if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
|
|
LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
|
|
return false;
|
|
}
|
|
|
|
EVT ArgVT = TLI.getValueType(DL, ArgTy);
|
|
LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
|
|
<< ArgVT.getEVTString() << "\n");
|
|
if (!ArgVT.isSimple()) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
|
|
return false;
|
|
}
|
|
|
|
switch (ArgVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
if (!FormalArg.hasAttribute(Attribute::SExt) &&
|
|
!FormalArg.hasAttribute(Attribute::ZExt)) {
|
|
// It must be any extend, this shouldn't happen for clang-generated IR
|
|
// so just fall back on SelectionDAG.
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
|
|
return false;
|
|
}
|
|
|
|
if (NextGPR32 == GPR32ArgRegs.end()) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
|
|
Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
|
|
|
|
// Allocating any GPR32 prohibits further use of floating point arguments.
|
|
NextFGR32 = FGR32ArgRegs.end();
|
|
NextAFGR64 = AFGR64ArgRegs.end();
|
|
break;
|
|
|
|
case MVT::i32:
|
|
if (FormalArg.hasAttribute(Attribute::ZExt)) {
|
|
// The O32 ABI does not permit a zero-extended i32.
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
|
|
return false;
|
|
}
|
|
|
|
if (NextGPR32 == GPR32ArgRegs.end()) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
|
|
Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
|
|
|
|
// Allocating any GPR32 prohibits further use of floating point arguments.
|
|
NextFGR32 = FGR32ArgRegs.end();
|
|
NextAFGR64 = AFGR64ArgRegs.end();
|
|
break;
|
|
|
|
case MVT::f32:
|
|
if (UnsupportedFPMode) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
|
|
return false;
|
|
}
|
|
if (NextFGR32 == FGR32ArgRegs.end()) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
|
|
Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
|
|
// Allocating an FGR32 also allocates the super-register AFGR64, and
|
|
// ABI rules require us to skip the corresponding GPR32.
|
|
if (NextGPR32 != GPR32ArgRegs.end())
|
|
NextGPR32++;
|
|
if (NextAFGR64 != AFGR64ArgRegs.end())
|
|
NextAFGR64++;
|
|
break;
|
|
|
|
case MVT::f64:
|
|
if (UnsupportedFPMode) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
|
|
return false;
|
|
}
|
|
if (NextAFGR64 == AFGR64ArgRegs.end()) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
|
|
Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
|
|
// Allocating an FGR32 also allocates the super-register AFGR64, and
|
|
// ABI rules require us to skip the corresponding GPR32 pair.
|
|
if (NextGPR32 != GPR32ArgRegs.end())
|
|
NextGPR32++;
|
|
if (NextGPR32 != GPR32ArgRegs.end())
|
|
NextGPR32++;
|
|
if (NextFGR32 != FGR32ArgRegs.end())
|
|
NextFGR32++;
|
|
break;
|
|
|
|
default:
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto &FormalArg : F->args()) {
|
|
unsigned ArgNo = FormalArg.getArgNo();
|
|
unsigned SrcReg = Allocation[ArgNo].Reg;
|
|
unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
|
|
// FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
|
|
// Without this, EmitLiveInCopies may eliminate the livein if its only
|
|
// use is a bitcast (which isn't turned into an instruction).
|
|
unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(DstReg, getKillRegState(true));
|
|
updateValueMap(&FormalArg, ResultReg);
|
|
}
|
|
|
|
// Calculate the size of the incoming arguments area.
|
|
// We currently reject all the cases where this would be non-zero.
|
|
unsigned IncomingArgSizeInBytes = 0;
|
|
|
|
// Account for the reserved argument area on ABI's that have one (O32).
|
|
// It seems strange to do this on the caller side but it's necessary in
|
|
// SelectionDAG's implementation.
|
|
IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
|
|
IncomingArgSizeInBytes);
|
|
|
|
MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
|
|
false);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
|
|
CallingConv::ID CC = CLI.CallConv;
|
|
bool IsTailCall = CLI.IsTailCall;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
const Value *Callee = CLI.Callee;
|
|
MCSymbol *Symbol = CLI.Symbol;
|
|
|
|
// Do not handle FastCC.
|
|
if (CC == CallingConv::Fast)
|
|
return false;
|
|
|
|
// Allow SelectionDAG isel to handle tail calls.
|
|
if (IsTailCall)
|
|
return false;
|
|
|
|
// Let SDISel handle vararg functions.
|
|
if (IsVarArg)
|
|
return false;
|
|
|
|
// FIXME: Only handle *simple* calls for now.
|
|
MVT RetVT;
|
|
if (CLI.RetTy->isVoidTy())
|
|
RetVT = MVT::isVoid;
|
|
else if (!isTypeSupported(CLI.RetTy, RetVT))
|
|
return false;
|
|
|
|
for (auto Flag : CLI.OutFlags)
|
|
if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
|
|
return false;
|
|
|
|
// Set up the argument vectors.
|
|
SmallVector<MVT, 16> OutVTs;
|
|
OutVTs.reserve(CLI.OutVals.size());
|
|
|
|
for (auto *Val : CLI.OutVals) {
|
|
MVT VT;
|
|
if (!isTypeLegal(Val->getType(), VT) &&
|
|
!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
|
|
return false;
|
|
|
|
// We don't handle vector parameters yet.
|
|
if (VT.isVector() || VT.getSizeInBits() > 64)
|
|
return false;
|
|
|
|
OutVTs.push_back(VT);
|
|
}
|
|
|
|
Address Addr;
|
|
if (!computeCallAddress(Callee, Addr))
|
|
return false;
|
|
|
|
// Handle the arguments now that we've gotten them.
|
|
unsigned NumBytes;
|
|
if (!processCallArgs(CLI, OutVTs, NumBytes))
|
|
return false;
|
|
|
|
if (!Addr.getGlobalValue())
|
|
return false;
|
|
|
|
// Issue the call.
|
|
unsigned DestAddress;
|
|
if (Symbol)
|
|
DestAddress = materializeExternalCallSym(Symbol);
|
|
else
|
|
DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
|
|
emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
|
|
Mips::RA).addReg(Mips::T9);
|
|
|
|
// Add implicit physical register uses to the call.
|
|
for (auto Reg : CLI.OutRegs)
|
|
MIB.addReg(Reg, RegState::Implicit);
|
|
|
|
// Add a register mask with the call-preserved registers.
|
|
// Proper defs for return values will be added by setPhysRegsDeadExcept().
|
|
MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
|
|
|
|
CLI.Call = MIB;
|
|
|
|
if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
|
|
// Attach callee address to the instruction, let asm printer emit
|
|
// .reloc R_MIPS_JALR.
|
|
if (Symbol)
|
|
MIB.addSym(Symbol, MipsII::MO_JALR);
|
|
else
|
|
MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
|
|
Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
|
|
}
|
|
|
|
// Finish off the call including any return values.
|
|
return finishCall(CLI, RetVT, NumBytes);
|
|
}
|
|
|
|
bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::bswap: {
|
|
Type *RetTy = II->getCalledFunction()->getReturnType();
|
|
|
|
MVT VT;
|
|
if (!isTypeSupported(RetTy, VT))
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(II->getOperand(0));
|
|
if (SrcReg == 0)
|
|
return false;
|
|
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (DestReg == 0)
|
|
return false;
|
|
if (VT == MVT::i16) {
|
|
if (Subtarget->hasMips32r2()) {
|
|
emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
|
|
updateValueMap(II, DestReg);
|
|
return true;
|
|
} else {
|
|
unsigned TempReg[3];
|
|
for (int i = 0; i < 3; i++) {
|
|
TempReg[i] = createResultReg(&Mips::GPR32RegClass);
|
|
if (TempReg[i] == 0)
|
|
return false;
|
|
}
|
|
emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
|
|
emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
|
|
emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
|
|
emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
|
|
updateValueMap(II, DestReg);
|
|
return true;
|
|
}
|
|
} else if (VT == MVT::i32) {
|
|
if (Subtarget->hasMips32r2()) {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
|
|
emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
|
|
updateValueMap(II, DestReg);
|
|
return true;
|
|
} else {
|
|
unsigned TempReg[8];
|
|
for (int i = 0; i < 8; i++) {
|
|
TempReg[i] = createResultReg(&Mips::GPR32RegClass);
|
|
if (TempReg[i] == 0)
|
|
return false;
|
|
}
|
|
|
|
emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
|
|
emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
|
|
emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
|
|
emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
|
|
|
|
emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
|
|
emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
|
|
|
|
emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
|
|
emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
|
|
emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
|
|
updateValueMap(II, DestReg);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove: {
|
|
const auto *MTI = cast<MemTransferInst>(II);
|
|
// Don't handle volatile.
|
|
if (MTI->isVolatile())
|
|
return false;
|
|
if (!MTI->getLength()->getType()->isIntegerTy(32))
|
|
return false;
|
|
const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
|
|
return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
|
|
}
|
|
case Intrinsic::memset: {
|
|
const MemSetInst *MSI = cast<MemSetInst>(II);
|
|
// Don't handle volatile.
|
|
if (MSI->isVolatile())
|
|
return false;
|
|
if (!MSI->getLength()->getType()->isIntegerTy(32))
|
|
return false;
|
|
return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MipsFastISel::selectRet(const Instruction *I) {
|
|
const Function &F = *I->getParent()->getParent();
|
|
const ReturnInst *Ret = cast<ReturnInst>(I);
|
|
|
|
LLVM_DEBUG(dbgs() << "selectRet\n");
|
|
|
|
if (!FuncInfo.CanLowerReturn)
|
|
return false;
|
|
|
|
// Build a list of return value registers.
|
|
SmallVector<unsigned, 4> RetRegs;
|
|
|
|
if (Ret->getNumOperands() > 0) {
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
// Do not handle FastCC.
|
|
if (CC == CallingConv::Fast)
|
|
return false;
|
|
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ValLocs;
|
|
MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
|
|
I->getContext());
|
|
CCAssignFn *RetCC = RetCC_Mips;
|
|
CCInfo.AnalyzeReturn(Outs, RetCC);
|
|
|
|
// Only handle a single return value for now.
|
|
if (ValLocs.size() != 1)
|
|
return false;
|
|
|
|
CCValAssign &VA = ValLocs[0];
|
|
const Value *RV = Ret->getOperand(0);
|
|
|
|
// Don't bother handling odd stuff for now.
|
|
if ((VA.getLocInfo() != CCValAssign::Full) &&
|
|
(VA.getLocInfo() != CCValAssign::BCvt))
|
|
return false;
|
|
|
|
// Only handle register returns for now.
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
|
|
unsigned Reg = getRegForValue(RV);
|
|
if (Reg == 0)
|
|
return false;
|
|
|
|
unsigned SrcReg = Reg + VA.getValNo();
|
|
Register DestReg = VA.getLocReg();
|
|
// Avoid a cross-class copy. This is very unlikely.
|
|
if (!MRI.getRegClass(SrcReg)->contains(DestReg))
|
|
return false;
|
|
|
|
EVT RVEVT = TLI.getValueType(DL, RV->getType());
|
|
if (!RVEVT.isSimple())
|
|
return false;
|
|
|
|
if (RVEVT.isVector())
|
|
return false;
|
|
|
|
MVT RVVT = RVEVT.getSimpleVT();
|
|
if (RVVT == MVT::f128)
|
|
return false;
|
|
|
|
// Do not handle FGR64 returns for now.
|
|
if (RVVT == MVT::f64 && UnsupportedFPMode) {
|
|
LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
|
|
return false;
|
|
}
|
|
|
|
MVT DestVT = VA.getValVT();
|
|
// Special handling for extended integers.
|
|
if (RVVT != DestVT) {
|
|
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
|
|
return false;
|
|
|
|
if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
|
|
bool IsZExt = Outs[0].Flags.isZExt();
|
|
SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make the copy.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
|
|
|
|
// Add register to return instruction.
|
|
RetRegs.push_back(VA.getLocReg());
|
|
}
|
|
MachineInstrBuilder MIB = emitInst(Mips::RetRA);
|
|
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
|
|
MIB.addReg(RetRegs[i], RegState::Implicit);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectTrunc(const Instruction *I) {
|
|
// The high bits for a type smaller than the register size are assumed to be
|
|
// undefined.
|
|
Value *Op = I->getOperand(0);
|
|
|
|
EVT SrcVT, DestVT;
|
|
SrcVT = TLI.getValueType(DL, Op->getType(), true);
|
|
DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
|
|
return false;
|
|
if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Op);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
// Because the high bits are undefined, a truncate doesn't generate
|
|
// any code.
|
|
updateValueMap(I, SrcReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectIntExt(const Instruction *I) {
|
|
Type *DestTy = I->getType();
|
|
Value *Src = I->getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
|
|
bool isZExt = isa<ZExtInst>(I);
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
EVT SrcEVT, DestEVT;
|
|
SrcEVT = TLI.getValueType(DL, SrcTy, true);
|
|
DestEVT = TLI.getValueType(DL, DestTy, true);
|
|
if (!SrcEVT.isSimple())
|
|
return false;
|
|
if (!DestEVT.isSimple())
|
|
return false;
|
|
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
MVT DestVT = DestEVT.getSimpleVT();
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
|
|
if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
|
|
return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg) {
|
|
unsigned ShiftAmt;
|
|
switch (SrcVT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i8:
|
|
ShiftAmt = 24;
|
|
break;
|
|
case MVT::i16:
|
|
ShiftAmt = 16;
|
|
break;
|
|
}
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
|
|
emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg) {
|
|
switch (SrcVT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i8:
|
|
emitInst(Mips::SEB, DestReg).addReg(SrcReg);
|
|
break;
|
|
case MVT::i16:
|
|
emitInst(Mips::SEH, DestReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg) {
|
|
if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
|
|
return false;
|
|
if (Subtarget->hasMips32r2())
|
|
return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
|
|
return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
|
|
}
|
|
|
|
bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg) {
|
|
int64_t Imm;
|
|
|
|
switch (SrcVT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i1:
|
|
Imm = 1;
|
|
break;
|
|
case MVT::i8:
|
|
Imm = 0xff;
|
|
break;
|
|
case MVT::i16:
|
|
Imm = 0xffff;
|
|
break;
|
|
}
|
|
|
|
emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg, bool IsZExt) {
|
|
// FastISel does not have plumbing to deal with extensions where the SrcVT or
|
|
// DestVT are odd things, so test to make sure that they are both types we can
|
|
// handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
|
|
// bail out to SelectionDAG.
|
|
if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
|
|
((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
|
|
return false;
|
|
if (IsZExt)
|
|
return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
|
|
return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
|
|
}
|
|
|
|
unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
bool isZExt) {
|
|
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
|
|
bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
|
|
return Success ? DestReg : 0;
|
|
}
|
|
|
|
bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
|
|
EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
|
|
if (!DestEVT.isSimple())
|
|
return false;
|
|
|
|
MVT DestVT = DestEVT.getSimpleVT();
|
|
if (DestVT != MVT::i32)
|
|
return false;
|
|
|
|
unsigned DivOpc;
|
|
switch (ISDOpcode) {
|
|
default:
|
|
return false;
|
|
case ISD::SDIV:
|
|
case ISD::SREM:
|
|
DivOpc = Mips::SDIV;
|
|
break;
|
|
case ISD::UDIV:
|
|
case ISD::UREM:
|
|
DivOpc = Mips::UDIV;
|
|
break;
|
|
}
|
|
|
|
unsigned Src0Reg = getRegForValue(I->getOperand(0));
|
|
unsigned Src1Reg = getRegForValue(I->getOperand(1));
|
|
if (!Src0Reg || !Src1Reg)
|
|
return false;
|
|
|
|
emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
|
|
emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
|
|
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
|
|
? Mips::MFHI
|
|
: Mips::MFLO;
|
|
emitInst(MFOpc, ResultReg);
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::selectShift(const Instruction *I) {
|
|
MVT RetVT;
|
|
|
|
if (!isTypeSupported(I->getType(), RetVT))
|
|
return false;
|
|
|
|
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
unsigned Opcode = I->getOpcode();
|
|
const Value *Op0 = I->getOperand(0);
|
|
unsigned Op0Reg = getRegForValue(Op0);
|
|
if (!Op0Reg)
|
|
return false;
|
|
|
|
// If AShr or LShr, then we need to make sure the operand0 is sign extended.
|
|
if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!TempReg)
|
|
return false;
|
|
|
|
MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
|
|
bool IsZExt = Opcode == Instruction::LShr;
|
|
if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
|
|
return false;
|
|
|
|
Op0Reg = TempReg;
|
|
}
|
|
|
|
if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint64_t ShiftVal = C->getZExtValue();
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
case Instruction::Shl:
|
|
Opcode = Mips::SLL;
|
|
break;
|
|
case Instruction::AShr:
|
|
Opcode = Mips::SRA;
|
|
break;
|
|
case Instruction::LShr:
|
|
Opcode = Mips::SRL;
|
|
break;
|
|
}
|
|
|
|
emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
unsigned Op1Reg = getRegForValue(I->getOperand(1));
|
|
if (!Op1Reg)
|
|
return false;
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
case Instruction::Shl:
|
|
Opcode = Mips::SLLV;
|
|
break;
|
|
case Instruction::AShr:
|
|
Opcode = Mips::SRAV;
|
|
break;
|
|
case Instruction::LShr:
|
|
Opcode = Mips::SRLV;
|
|
break;
|
|
}
|
|
|
|
emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
break;
|
|
case Instruction::Load:
|
|
return selectLoad(I);
|
|
case Instruction::Store:
|
|
return selectStore(I);
|
|
case Instruction::SDiv:
|
|
if (!selectBinaryOp(I, ISD::SDIV))
|
|
return selectDivRem(I, ISD::SDIV);
|
|
return true;
|
|
case Instruction::UDiv:
|
|
if (!selectBinaryOp(I, ISD::UDIV))
|
|
return selectDivRem(I, ISD::UDIV);
|
|
return true;
|
|
case Instruction::SRem:
|
|
if (!selectBinaryOp(I, ISD::SREM))
|
|
return selectDivRem(I, ISD::SREM);
|
|
return true;
|
|
case Instruction::URem:
|
|
if (!selectBinaryOp(I, ISD::UREM))
|
|
return selectDivRem(I, ISD::UREM);
|
|
return true;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return selectShift(I);
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return selectLogicalOp(I);
|
|
case Instruction::Br:
|
|
return selectBranch(I);
|
|
case Instruction::Ret:
|
|
return selectRet(I);
|
|
case Instruction::Trunc:
|
|
return selectTrunc(I);
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
return selectIntExt(I);
|
|
case Instruction::FPTrunc:
|
|
return selectFPTrunc(I);
|
|
case Instruction::FPExt:
|
|
return selectFPExt(I);
|
|
case Instruction::FPToSI:
|
|
return selectFPToInt(I, /*isSigned*/ true);
|
|
case Instruction::FPToUI:
|
|
return selectFPToInt(I, /*isSigned*/ false);
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return selectCmp(I);
|
|
case Instruction::Select:
|
|
return selectSelect(I);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
|
|
bool IsUnsigned) {
|
|
unsigned VReg = getRegForValue(V);
|
|
if (VReg == 0)
|
|
return 0;
|
|
MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
|
|
|
|
if (VMVT == MVT::i1)
|
|
return 0;
|
|
|
|
if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
|
|
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
|
|
if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
|
|
return 0;
|
|
VReg = TempReg;
|
|
}
|
|
return VReg;
|
|
}
|
|
|
|
void MipsFastISel::simplifyAddress(Address &Addr) {
|
|
if (!isInt<16>(Addr.getOffset())) {
|
|
unsigned TempReg =
|
|
materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
|
|
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
|
|
emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
|
|
Addr.setReg(DestReg);
|
|
Addr.setOffset(0);
|
|
}
|
|
}
|
|
|
|
unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, unsigned Op1) {
|
|
// We treat the MUL instruction in a special way because it clobbers
|
|
// the HI0 & LO0 registers. The TableGen definition of this instruction can
|
|
// mark these registers only as implicitly defined. As a result, the
|
|
// register allocator runs out of registers when this instruction is
|
|
// followed by another instruction that defines the same registers too.
|
|
// We can fix this by explicitly marking those registers as dead.
|
|
if (MachineInstOpcode == Mips::MUL) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0)
|
|
.addReg(Op1)
|
|
.addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
|
|
.addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
|
|
return ResultReg;
|
|
}
|
|
|
|
return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op1);
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) {
|
|
return new MipsFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
} // end namespace llvm
|