1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
Heejin Ahn 37702c2638 [WebAssembly] Put utility functions in Utils directory (NFC)
This CL
1. Creates Utils/ directory under lib/Target/WebAssembly
2. Moves existing WebAssemblyUtilities.cpp|h into the Utils/ directory
3. Creates Utils/WebAssemblyTypeUtilities.cpp|h and put type
   declarataions and type conversion functions scattered in various
   places into this single place.

It has been suggested several times that it is not easy to share utility
functions between subdirectories (AsmParser, DIsassembler, MCTargetDesc,
...). Sometimes we ended up [[ https://reviews.llvm.org/D92840#2478863 | duplicating ]] the same function because of
this.

There are already other targets doing this: AArch64, AMDGPU, and ARM
have Utils/ subdirectory under their target directory.

This extracts the utility functions into a single directory Utils/ and
make them sharable among all passes in WebAssembly/ and its
subdirectories. Also I believe gathering all type-related conversion
functionalities into a single place makes it more usable. (Actually I
was working on another CL that uses various type conversion functions
scattered in multiple places, which became the motivation for this CL.)

Reviewed By: dschuff, aardappel

Differential Revision: https://reviews.llvm.org/D100995
2021-04-22 15:29:43 -07:00

980 lines
37 KiB
C++

//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the value stack.
///
/// This is primarily a code size optimization, since temporary values on the
/// value stack don't need to be named.
///
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "Utils/WebAssemblyUtilities.h"
#include "WebAssembly.h"
#include "WebAssemblyDebugValueManager.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "wasm-reg-stackify"
namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
StringRef getPassName() const override {
return "WebAssembly Register Stackify";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(LiveVariablesID);
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace
char WebAssemblyRegStackify::ID = 0;
INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
"Reorder instructions to use the WebAssembly value stack",
false, false)
FunctionPass *llvm::createWebAssemblyRegStackify() {
return new WebAssemblyRegStackify();
}
// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints for an instruction which is on
// the expression stack.
static void imposeStackOrdering(MachineInstr *MI) {
// Write the opaque VALUE_STACK register.
if (!MI->definesRegister(WebAssembly::VALUE_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
/*isDef=*/true,
/*isImp=*/true));
// Also read the opaque VALUE_STACK register.
if (!MI->readsRegister(WebAssembly::VALUE_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
/*isDef=*/false,
/*isImp=*/true));
}
// Convert an IMPLICIT_DEF instruction into an instruction which defines
// a constant zero value.
static void convertImplicitDefToConstZero(MachineInstr *MI,
MachineRegisterInfo &MRI,
const TargetInstrInfo *TII,
MachineFunction &MF,
LiveIntervals &LIS) {
assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
if (RegClass == &WebAssembly::I32RegClass) {
MI->setDesc(TII->get(WebAssembly::CONST_I32));
MI->addOperand(MachineOperand::CreateImm(0));
} else if (RegClass == &WebAssembly::I64RegClass) {
MI->setDesc(TII->get(WebAssembly::CONST_I64));
MI->addOperand(MachineOperand::CreateImm(0));
} else if (RegClass == &WebAssembly::F32RegClass) {
MI->setDesc(TII->get(WebAssembly::CONST_F32));
auto *Val = cast<ConstantFP>(Constant::getNullValue(
Type::getFloatTy(MF.getFunction().getContext())));
MI->addOperand(MachineOperand::CreateFPImm(Val));
} else if (RegClass == &WebAssembly::F64RegClass) {
MI->setDesc(TII->get(WebAssembly::CONST_F64));
auto *Val = cast<ConstantFP>(Constant::getNullValue(
Type::getDoubleTy(MF.getFunction().getContext())));
MI->addOperand(MachineOperand::CreateFPImm(Val));
} else if (RegClass == &WebAssembly::V128RegClass) {
MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
MI->addOperand(MachineOperand::CreateImm(0));
MI->addOperand(MachineOperand::CreateImm(0));
} else {
llvm_unreachable("Unexpected reg class");
}
}
// Determine whether a call to the callee referenced by
// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
// effects.
static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
bool &Effects, bool &StackPointer) {
// All calls can use the stack pointer.
StackPointer = true;
const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
if (MO.isGlobal()) {
const Constant *GV = MO.getGlobal();
if (const auto *GA = dyn_cast<GlobalAlias>(GV))
if (!GA->isInterposable())
GV = GA->getAliasee();
if (const auto *F = dyn_cast<Function>(GV)) {
if (!F->doesNotThrow())
Effects = true;
if (F->doesNotAccessMemory())
return;
if (F->onlyReadsMemory()) {
Read = true;
return;
}
}
}
// Assume the worst.
Write = true;
Read = true;
Effects = true;
}
// Determine whether MI reads memory, writes memory, has side effects,
// and/or uses the stack pointer value.
static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
bool &Write, bool &Effects, bool &StackPointer) {
assert(!MI.isTerminator());
if (MI.isDebugInstr() || MI.isPosition())
return;
// Check for loads.
if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
Read = true;
// Check for stores.
if (MI.mayStore()) {
Write = true;
} else if (MI.hasOrderedMemoryRef()) {
switch (MI.getOpcode()) {
case WebAssembly::DIV_S_I32:
case WebAssembly::DIV_S_I64:
case WebAssembly::REM_S_I32:
case WebAssembly::REM_S_I64:
case WebAssembly::DIV_U_I32:
case WebAssembly::DIV_U_I64:
case WebAssembly::REM_U_I32:
case WebAssembly::REM_U_I64:
case WebAssembly::I32_TRUNC_S_F32:
case WebAssembly::I64_TRUNC_S_F32:
case WebAssembly::I32_TRUNC_S_F64:
case WebAssembly::I64_TRUNC_S_F64:
case WebAssembly::I32_TRUNC_U_F32:
case WebAssembly::I64_TRUNC_U_F32:
case WebAssembly::I32_TRUNC_U_F64:
case WebAssembly::I64_TRUNC_U_F64:
// These instruction have hasUnmodeledSideEffects() returning true
// because they trap on overflow and invalid so they can't be arbitrarily
// moved, however hasOrderedMemoryRef() interprets this plus their lack
// of memoperands as having a potential unknown memory reference.
break;
default:
// Record volatile accesses, unless it's a call, as calls are handled
// specially below.
if (!MI.isCall()) {
Write = true;
Effects = true;
}
break;
}
}
// Check for side effects.
if (MI.hasUnmodeledSideEffects()) {
switch (MI.getOpcode()) {
case WebAssembly::DIV_S_I32:
case WebAssembly::DIV_S_I64:
case WebAssembly::REM_S_I32:
case WebAssembly::REM_S_I64:
case WebAssembly::DIV_U_I32:
case WebAssembly::DIV_U_I64:
case WebAssembly::REM_U_I32:
case WebAssembly::REM_U_I64:
case WebAssembly::I32_TRUNC_S_F32:
case WebAssembly::I64_TRUNC_S_F32:
case WebAssembly::I32_TRUNC_S_F64:
case WebAssembly::I64_TRUNC_S_F64:
case WebAssembly::I32_TRUNC_U_F32:
case WebAssembly::I64_TRUNC_U_F32:
case WebAssembly::I32_TRUNC_U_F64:
case WebAssembly::I64_TRUNC_U_F64:
// These instructions have hasUnmodeledSideEffects() returning true
// because they trap on overflow and invalid so they can't be arbitrarily
// moved, however in the specific case of register stackifying, it is safe
// to move them because overflow and invalid are Undefined Behavior.
break;
default:
Effects = true;
break;
}
}
// Check for writes to __stack_pointer global.
if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
StackPointer = true;
// Analyze calls.
if (MI.isCall()) {
queryCallee(MI, Read, Write, Effects, StackPointer);
}
}
// Test whether Def is safe and profitable to rematerialize.
static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
const WebAssemblyInstrInfo *TII) {
return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
}
// Identify the definition for this register at this point. This is a
// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
// LiveIntervals to handle complex cases.
static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
const MachineRegisterInfo &MRI,
const LiveIntervals &LIS) {
// Most registers are in SSA form here so we try a quick MRI query first.
if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
return Def;
// MRI doesn't know what the Def is. Try asking LIS.
if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
LIS.getInstructionIndex(*Insert)))
return LIS.getInstructionFromIndex(ValNo->def);
return nullptr;
}
// Test whether Reg, as defined at Def, has exactly one use. This is a
// generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
// to handle complex cases.
static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
MachineDominatorTree &MDT, LiveIntervals &LIS) {
// Most registers are in SSA form here so we try a quick MRI query first.
if (MRI.hasOneUse(Reg))
return true;
bool HasOne = false;
const LiveInterval &LI = LIS.getInterval(Reg);
const VNInfo *DefVNI =
LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
assert(DefVNI);
for (auto &I : MRI.use_nodbg_operands(Reg)) {
const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
if (Result.valueIn() == DefVNI) {
if (!Result.isKill())
return false;
if (HasOne)
return false;
HasOne = true;
}
}
return HasOne;
}
// Test whether it's safe to move Def to just before Insert.
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
const MachineInstr *Insert, AliasAnalysis &AA,
const WebAssemblyFunctionInfo &MFI,
const MachineRegisterInfo &MRI) {
const MachineInstr *DefI = Def->getParent();
const MachineInstr *UseI = Use->getParent();
assert(DefI->getParent() == Insert->getParent());
assert(UseI->getParent() == Insert->getParent());
// The first def of a multivalue instruction can be stackified by moving,
// since the later defs can always be placed into locals if necessary. Later
// defs can only be stackified if all previous defs are already stackified
// since ExplicitLocals will not know how to place a def in a local if a
// subsequent def is stackified. But only one def can be stackified by moving
// the instruction, so it must be the first one.
//
// TODO: This could be loosened to be the first *live* def, but care would
// have to be taken to ensure the drops of the initial dead defs can be
// placed. This would require checking that no previous defs are used in the
// same instruction as subsequent defs.
if (Def != DefI->defs().begin())
return false;
// If any subsequent def is used prior to the current value by the same
// instruction in which the current value is used, we cannot
// stackify. Stackifying in this case would require that def moving below the
// current def in the stack, which cannot be achieved, even with locals.
for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
for (const auto &PriorUse : UseI->uses()) {
if (&PriorUse == Use)
break;
if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
return false;
}
}
// If moving is a semantic nop, it is always allowed
const MachineBasicBlock *MBB = DefI->getParent();
auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
;
if (NextI == Insert)
return true;
// 'catch' and 'catch_all' should be the first instruction of a BB and cannot
// move.
if (WebAssembly::isCatch(DefI->getOpcode()))
return false;
// Check for register dependencies.
SmallVector<unsigned, 4> MutableRegisters;
for (const MachineOperand &MO : DefI->operands()) {
if (!MO.isReg() || MO.isUndef())
continue;
Register Reg = MO.getReg();
// If the register is dead here and at Insert, ignore it.
if (MO.isDead() && Insert->definesRegister(Reg) &&
!Insert->readsRegister(Reg))
continue;
if (Register::isPhysicalRegister(Reg)) {
// Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
// from moving down, and we've already checked for that.
if (Reg == WebAssembly::ARGUMENTS)
continue;
// If the physical register is never modified, ignore it.
if (!MRI.isPhysRegModified(Reg))
continue;
// Otherwise, it's a physical register with unknown liveness.
return false;
}
// If one of the operands isn't in SSA form, it has different values at
// different times, and we need to make sure we don't move our use across
// a different def.
if (!MO.isDef() && !MRI.hasOneDef(Reg))
MutableRegisters.push_back(Reg);
}
bool Read = false, Write = false, Effects = false, StackPointer = false;
query(*DefI, AA, Read, Write, Effects, StackPointer);
// If the instruction does not access memory and has no side effects, it has
// no additional dependencies.
bool HasMutableRegisters = !MutableRegisters.empty();
if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
return true;
// Scan through the intervening instructions between DefI and Insert.
MachineBasicBlock::const_iterator D(DefI), I(Insert);
for (--I; I != D; --I) {
bool InterveningRead = false;
bool InterveningWrite = false;
bool InterveningEffects = false;
bool InterveningStackPointer = false;
query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
InterveningStackPointer);
if (Effects && InterveningEffects)
return false;
if (Read && InterveningWrite)
return false;
if (Write && (InterveningRead || InterveningWrite))
return false;
if (StackPointer && InterveningStackPointer)
return false;
for (unsigned Reg : MutableRegisters)
for (const MachineOperand &MO : I->operands())
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
return false;
}
return true;
}
/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
const MachineBasicBlock &MBB,
const MachineRegisterInfo &MRI,
const MachineDominatorTree &MDT,
LiveIntervals &LIS,
WebAssemblyFunctionInfo &MFI) {
const LiveInterval &LI = LIS.getInterval(Reg);
const MachineInstr *OneUseInst = OneUse.getParent();
VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
if (&Use == &OneUse)
continue;
const MachineInstr *UseInst = Use.getParent();
VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
if (UseVNI != OneUseVNI)
continue;
if (UseInst == OneUseInst) {
// Another use in the same instruction. We need to ensure that the one
// selected use happens "before" it.
if (&OneUse > &Use)
return false;
} else {
// Test that the use is dominated by the one selected use.
while (!MDT.dominates(OneUseInst, UseInst)) {
// Actually, dominating is over-conservative. Test that the use would
// happen after the one selected use in the stack evaluation order.
//
// This is needed as a consequence of using implicit local.gets for
// uses and implicit local.sets for defs.
if (UseInst->getDesc().getNumDefs() == 0)
return false;
const MachineOperand &MO = UseInst->getOperand(0);
if (!MO.isReg())
return false;
Register DefReg = MO.getReg();
if (!Register::isVirtualRegister(DefReg) ||
!MFI.isVRegStackified(DefReg))
return false;
assert(MRI.hasOneNonDBGUse(DefReg));
const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
const MachineInstr *NewUseInst = NewUse.getParent();
if (NewUseInst == OneUseInst) {
if (&OneUse > &NewUse)
return false;
break;
}
UseInst = NewUseInst;
}
}
}
return true;
}
/// Get the appropriate tee opcode for the given register class.
static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
if (RC == &WebAssembly::I32RegClass)
return WebAssembly::TEE_I32;
if (RC == &WebAssembly::I64RegClass)
return WebAssembly::TEE_I64;
if (RC == &WebAssembly::F32RegClass)
return WebAssembly::TEE_F32;
if (RC == &WebAssembly::F64RegClass)
return WebAssembly::TEE_F64;
if (RC == &WebAssembly::V128RegClass)
return WebAssembly::TEE_V128;
llvm_unreachable("Unexpected register class");
}
// Shrink LI to its uses, cleaning up LI.
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
if (LIS.shrinkToUses(&LI)) {
SmallVector<LiveInterval *, 4> SplitLIs;
LIS.splitSeparateComponents(LI, SplitLIs);
}
}
/// A single-use def in the same block with no intervening memory or register
/// dependencies; move the def down and nest it with the current instruction.
static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
MachineInstr *Def, MachineBasicBlock &MBB,
MachineInstr *Insert, LiveIntervals &LIS,
WebAssemblyFunctionInfo &MFI,
MachineRegisterInfo &MRI) {
LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
WebAssemblyDebugValueManager DefDIs(Def);
MBB.splice(Insert, &MBB, Def);
DefDIs.move(Insert);
LIS.handleMove(*Def);
if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
// No one else is using this register for anything so we can just stackify
// it in place.
MFI.stackifyVReg(MRI, Reg);
} else {
// The register may have unrelated uses or defs; create a new register for
// just our one def and use so that we can stackify it.
Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
Def->getOperand(0).setReg(NewReg);
Op.setReg(NewReg);
// Tell LiveIntervals about the new register.
LIS.createAndComputeVirtRegInterval(NewReg);
// Tell LiveIntervals about the changes to the old register.
LiveInterval &LI = LIS.getInterval(Reg);
LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
/*RemoveDeadValNo=*/true);
MFI.stackifyVReg(MRI, NewReg);
DefDIs.updateReg(NewReg);
LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
}
imposeStackOrdering(Def);
return Def;
}
/// A trivially cloneable instruction; clone it and nest the new copy with the
/// current instruction.
static MachineInstr *rematerializeCheapDef(
unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
WebAssemblyDebugValueManager DefDIs(&Def);
Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
Op.setReg(NewReg);
MachineInstr *Clone = &*std::prev(Insert);
LIS.InsertMachineInstrInMaps(*Clone);
LIS.createAndComputeVirtRegInterval(NewReg);
MFI.stackifyVReg(MRI, NewReg);
imposeStackOrdering(Clone);
LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
// Shrink the interval.
bool IsDead = MRI.use_empty(Reg);
if (!IsDead) {
LiveInterval &LI = LIS.getInterval(Reg);
shrinkToUses(LI, LIS);
IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
}
// If that was the last use of the original, delete the original.
// Move or clone corresponding DBG_VALUEs to the 'Insert' location.
if (IsDead) {
LLVM_DEBUG(dbgs() << " - Deleting original\n");
SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
LIS.removeInterval(Reg);
LIS.RemoveMachineInstrFromMaps(Def);
Def.eraseFromParent();
DefDIs.move(&*Insert);
DefDIs.updateReg(NewReg);
} else {
DefDIs.clone(&*Insert, NewReg);
}
return Clone;
}
/// A multiple-use def in the same block with no intervening memory or register
/// dependencies; move the def down, nest it with the current instruction, and
/// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
/// this:
///
/// Reg = INST ... // Def
/// INST ..., Reg, ... // Insert
/// INST ..., Reg, ...
/// INST ..., Reg, ...
///
/// to this:
///
/// DefReg = INST ... // Def (to become the new Insert)
/// TeeReg, Reg = TEE_... DefReg
/// INST ..., TeeReg, ... // Insert
/// INST ..., Reg, ...
/// INST ..., Reg, ...
///
/// with DefReg and TeeReg stackified. This eliminates a local.get from the
/// resulting code.
static MachineInstr *moveAndTeeForMultiUse(
unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
WebAssemblyDebugValueManager DefDIs(Def);
// Move Def into place.
MBB.splice(Insert, &MBB, Def);
LIS.handleMove(*Def);
// Create the Tee and attach the registers.
const auto *RegClass = MRI.getRegClass(Reg);
Register TeeReg = MRI.createVirtualRegister(RegClass);
Register DefReg = MRI.createVirtualRegister(RegClass);
MachineOperand &DefMO = Def->getOperand(0);
MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
TII->get(getTeeOpcode(RegClass)), TeeReg)
.addReg(Reg, RegState::Define)
.addReg(DefReg, getUndefRegState(DefMO.isDead()));
Op.setReg(TeeReg);
DefMO.setReg(DefReg);
SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
DefDIs.move(Insert);
// Tell LiveIntervals we moved the original vreg def from Def to Tee.
LiveInterval &LI = LIS.getInterval(Reg);
LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
I->start = TeeIdx;
ValNo->def = TeeIdx;
shrinkToUses(LI, LIS);
// Finish stackifying the new regs.
LIS.createAndComputeVirtRegInterval(TeeReg);
LIS.createAndComputeVirtRegInterval(DefReg);
MFI.stackifyVReg(MRI, DefReg);
MFI.stackifyVReg(MRI, TeeReg);
imposeStackOrdering(Def);
imposeStackOrdering(Tee);
DefDIs.clone(Tee, DefReg);
DefDIs.clone(Insert, TeeReg);
LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
return Def;
}
namespace {
/// A stack for walking the tree of instructions being built, visiting the
/// MachineOperands in DFS order.
class TreeWalkerState {
using mop_iterator = MachineInstr::mop_iterator;
using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
using RangeTy = iterator_range<mop_reverse_iterator>;
SmallVector<RangeTy, 4> Worklist;
public:
explicit TreeWalkerState(MachineInstr *Insert) {
const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
if (!Range.empty())
Worklist.push_back(reverse(Range));
}
bool done() const { return Worklist.empty(); }
MachineOperand &pop() {
RangeTy &Range = Worklist.back();
MachineOperand &Op = *Range.begin();
Range = drop_begin(Range);
if (Range.empty())
Worklist.pop_back();
assert((Worklist.empty() || !Worklist.back().empty()) &&
"Empty ranges shouldn't remain in the worklist");
return Op;
}
/// Push Instr's operands onto the stack to be visited.
void pushOperands(MachineInstr *Instr) {
const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
if (!Range.empty())
Worklist.push_back(reverse(Range));
}
/// Some of Instr's operands are on the top of the stack; remove them and
/// re-insert them starting from the beginning (because we've commuted them).
void resetTopOperands(MachineInstr *Instr) {
assert(hasRemainingOperands(Instr) &&
"Reseting operands should only be done when the instruction has "
"an operand still on the stack");
Worklist.back() = reverse(Instr->explicit_uses());
}
/// Test whether Instr has operands remaining to be visited at the top of
/// the stack.
bool hasRemainingOperands(const MachineInstr *Instr) const {
if (Worklist.empty())
return false;
const RangeTy &Range = Worklist.back();
return !Range.empty() && Range.begin()->getParent() == Instr;
}
/// Test whether the given register is present on the stack, indicating an
/// operand in the tree that we haven't visited yet. Moving a definition of
/// Reg to a point in the tree after that would change its value.
///
/// This is needed as a consequence of using implicit local.gets for
/// uses and implicit local.sets for defs.
bool isOnStack(unsigned Reg) const {
for (const RangeTy &Range : Worklist)
for (const MachineOperand &MO : Range)
if (MO.isReg() && MO.getReg() == Reg)
return true;
return false;
}
};
/// State to keep track of whether commuting is in flight or whether it's been
/// tried for the current instruction and didn't work.
class CommutingState {
/// There are effectively three states: the initial state where we haven't
/// started commuting anything and we don't know anything yet, the tentative
/// state where we've commuted the operands of the current instruction and are
/// revisiting it, and the declined state where we've reverted the operands
/// back to their original order and will no longer commute it further.
bool TentativelyCommuting = false;
bool Declined = false;
/// During the tentative state, these hold the operand indices of the commuted
/// operands.
unsigned Operand0, Operand1;
public:
/// Stackification for an operand was not successful due to ordering
/// constraints. If possible, and if we haven't already tried it and declined
/// it, commute Insert's operands and prepare to revisit it.
void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
const WebAssemblyInstrInfo *TII) {
if (TentativelyCommuting) {
assert(!Declined &&
"Don't decline commuting until you've finished trying it");
// Commuting didn't help. Revert it.
TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
TentativelyCommuting = false;
Declined = true;
} else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
// Tentatively commute the operands and try again.
TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
TreeWalker.resetTopOperands(Insert);
TentativelyCommuting = true;
Declined = false;
}
}
}
/// Stackification for some operand was successful. Reset to the default
/// state.
void reset() {
TentativelyCommuting = false;
Declined = false;
}
};
} // end anonymous namespace
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
<< MF.getName() << '\n');
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
auto &MDT = getAnalysis<MachineDominatorTree>();
auto &LIS = getAnalysis<LiveIntervals>();
// Walk the instructions from the bottom up. Currently we don't look past
// block boundaries, and the blocks aren't ordered so the block visitation
// order isn't significant, but we may want to change this in the future.
for (MachineBasicBlock &MBB : MF) {
// Don't use a range-based for loop, because we modify the list as we're
// iterating over it and the end iterator may change.
for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
MachineInstr *Insert = &*MII;
// Don't nest anything inside an inline asm, because we don't have
// constraints for $push inputs.
if (Insert->isInlineAsm())
continue;
// Ignore debugging intrinsics.
if (Insert->isDebugValue())
continue;
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in LIFO order.
CommutingState Commuting;
TreeWalkerState TreeWalker(Insert);
while (!TreeWalker.done()) {
MachineOperand &Use = TreeWalker.pop();
// We're only interested in explicit virtual register operands.
if (!Use.isReg())
continue;
Register Reg = Use.getReg();
assert(Use.isUse() && "explicit_uses() should only iterate over uses");
assert(!Use.isImplicit() &&
"explicit_uses() should only iterate over explicit operands");
if (Register::isPhysicalRegister(Reg))
continue;
// Identify the definition for this register at this point.
MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
if (!DefI)
continue;
// Don't nest an INLINE_ASM def into anything, because we don't have
// constraints for $pop outputs.
if (DefI->isInlineAsm())
continue;
// Argument instructions represent live-in registers and not real
// instructions.
if (WebAssembly::isArgument(DefI->getOpcode()))
continue;
MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
assert(Def != nullptr);
// Decide which strategy to take. Prefer to move a single-use value
// over cloning it, and prefer cloning over introducing a tee.
// For moving, we require the def to be in the same block as the use;
// this makes things simpler (LiveIntervals' handleMove function only
// supports intra-block moves) and it's MachineSink's job to catch all
// the sinking opportunities anyway.
bool SameBlock = DefI->getParent() == &MBB;
bool CanMove = SameBlock &&
isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) &&
!TreeWalker.isOnStack(Reg);
if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
// If we are removing the frame base reg completely, remove the debug
// info as well.
// TODO: Encode this properly as a stackified value.
if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
MFI.clearFrameBaseVreg();
} else if (shouldRematerialize(*DefI, AA, TII)) {
Insert =
rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
LIS, MFI, MRI, TII, TRI);
} else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
LIS, MFI)) {
Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
MRI, TII);
} else {
// We failed to stackify the operand. If the problem was ordering
// constraints, Commuting may be able to help.
if (!CanMove && SameBlock)
Commuting.maybeCommute(Insert, TreeWalker, TII);
// Proceed to the next operand.
continue;
}
// Stackifying a multivalue def may unlock in-place stackification of
// subsequent defs. TODO: Handle the case where the consecutive uses are
// not all in the same instruction.
auto *SubsequentDef = Insert->defs().begin();
auto *SubsequentUse = &Use;
while (SubsequentDef != Insert->defs().end() &&
SubsequentUse != Use.getParent()->uses().end()) {
if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
break;
unsigned DefReg = SubsequentDef->getReg();
unsigned UseReg = SubsequentUse->getReg();
// TODO: This single-use restriction could be relaxed by using tees
if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
break;
MFI.stackifyVReg(MRI, DefReg);
++SubsequentDef;
++SubsequentUse;
}
// If the instruction we just stackified is an IMPLICIT_DEF, convert it
// to a constant 0 so that the def is explicit, and the push/pop
// correspondence is maintained.
if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
// We stackified an operand. Add the defining instruction's operands to
// the worklist stack now to continue to build an ever deeper tree.
Commuting.reset();
TreeWalker.pushOperands(Insert);
}
// If we stackified any operands, skip over the tree to start looking for
// the next instruction we can build a tree on.
if (Insert != &*MII) {
imposeStackOrdering(&*MII);
MII = MachineBasicBlock::iterator(Insert).getReverse();
Changed = true;
}
}
}
// If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
// that it never looks like a use-before-def.
if (Changed) {
MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
for (MachineBasicBlock &MBB : MF)
MBB.addLiveIn(WebAssembly::VALUE_STACK);
}
#ifndef NDEBUG
// Verify that pushes and pops are performed in LIFO order.
SmallVector<unsigned, 0> Stack;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.isDebugInstr())
continue;
for (MachineOperand &MO : reverse(MI.explicit_uses())) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (MFI.isVRegStackified(Reg))
assert(Stack.pop_back_val() == Reg &&
"Register stack pop should be paired with a push");
}
for (MachineOperand &MO : MI.defs()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (MFI.isVRegStackified(Reg))
Stack.push_back(MO.getReg());
}
}
// TODO: Generalize this code to support keeping values on the stack across
// basic block boundaries.
assert(Stack.empty() &&
"Register stack pushes and pops should be balanced");
}
#endif
return Changed;
}