mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
8b64c971e5
* Adds a TypeSize struct to represent the known minimum size of a type along with a flag to indicate that the runtime size is a integer multiple of that size * Converts existing size query functions from Type.h and DataLayout.h to return a TypeSize result * Adds convenience methods (including a transparent conversion operator to uint64_t) so that most existing code 'just works' as if the return values were still scalars. * Uses the new size queries along with ElementCount to ensure that all supported instructions used with scalable vectors can be constructed in IR. Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen Reviewed By: rovka, sdesmalen Differential Revision: https://reviews.llvm.org/D53137 llvm-svn: 374042
878 lines
31 KiB
C++
878 lines
31 KiB
C++
//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines layout properties related to datatype size/offset/alignment
|
|
// information.
|
|
//
|
|
// This structure should be created once, filled in if the defaults are not
|
|
// correct and then passed around by const&. None of the members functions
|
|
// require modification to the object.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Support for StructLayout
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
|
|
assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
|
|
StructSize = 0;
|
|
IsPadded = false;
|
|
NumElements = ST->getNumElements();
|
|
|
|
// Loop over each of the elements, placing them in memory.
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i) {
|
|
Type *Ty = ST->getElementType(i);
|
|
const Align TyAlign(ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty));
|
|
|
|
// Add padding if necessary to align the data element properly.
|
|
if (!isAligned(TyAlign, StructSize)) {
|
|
IsPadded = true;
|
|
StructSize = alignTo(StructSize, TyAlign);
|
|
}
|
|
|
|
// Keep track of maximum alignment constraint.
|
|
StructAlignment = std::max(TyAlign, StructAlignment);
|
|
|
|
MemberOffsets[i] = StructSize;
|
|
StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item
|
|
}
|
|
|
|
// Add padding to the end of the struct so that it could be put in an array
|
|
// and all array elements would be aligned correctly.
|
|
if (!isAligned(StructAlignment, StructSize)) {
|
|
IsPadded = true;
|
|
StructSize = alignTo(StructSize, StructAlignment);
|
|
}
|
|
}
|
|
|
|
/// getElementContainingOffset - Given a valid offset into the structure,
|
|
/// return the structure index that contains it.
|
|
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
|
|
const uint64_t *SI =
|
|
std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
|
|
assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
|
|
--SI;
|
|
assert(*SI <= Offset && "upper_bound didn't work");
|
|
assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
|
|
(SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
|
|
"Upper bound didn't work!");
|
|
|
|
// Multiple fields can have the same offset if any of them are zero sized.
|
|
// For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
|
|
// at the i32 element, because it is the last element at that offset. This is
|
|
// the right one to return, because anything after it will have a higher
|
|
// offset, implying that this element is non-empty.
|
|
return SI-&MemberOffsets[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LayoutAlignElem, LayoutAlign support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LayoutAlignElem LayoutAlignElem::get(AlignTypeEnum align_type, Align abi_align,
|
|
Align pref_align, uint32_t bit_width) {
|
|
assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
|
|
LayoutAlignElem retval;
|
|
retval.AlignType = align_type;
|
|
retval.ABIAlign = abi_align;
|
|
retval.PrefAlign = pref_align;
|
|
retval.TypeBitWidth = bit_width;
|
|
return retval;
|
|
}
|
|
|
|
bool
|
|
LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
|
|
return (AlignType == rhs.AlignType
|
|
&& ABIAlign == rhs.ABIAlign
|
|
&& PrefAlign == rhs.PrefAlign
|
|
&& TypeBitWidth == rhs.TypeBitWidth);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PointerAlignElem, PointerAlign support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PointerAlignElem PointerAlignElem::get(uint32_t AddressSpace, Align ABIAlign,
|
|
Align PrefAlign, uint32_t TypeByteWidth,
|
|
uint32_t IndexWidth) {
|
|
assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
|
|
PointerAlignElem retval;
|
|
retval.AddressSpace = AddressSpace;
|
|
retval.ABIAlign = ABIAlign;
|
|
retval.PrefAlign = PrefAlign;
|
|
retval.TypeByteWidth = TypeByteWidth;
|
|
retval.IndexWidth = IndexWidth;
|
|
return retval;
|
|
}
|
|
|
|
bool
|
|
PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
|
|
return (ABIAlign == rhs.ABIAlign
|
|
&& AddressSpace == rhs.AddressSpace
|
|
&& PrefAlign == rhs.PrefAlign
|
|
&& TypeByteWidth == rhs.TypeByteWidth
|
|
&& IndexWidth == rhs.IndexWidth);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DataLayout Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const char *DataLayout::getManglingComponent(const Triple &T) {
|
|
if (T.isOSBinFormatMachO())
|
|
return "-m:o";
|
|
if (T.isOSWindows() && T.isOSBinFormatCOFF())
|
|
return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
|
|
return "-m:e";
|
|
}
|
|
|
|
static const LayoutAlignElem DefaultAlignments[] = {
|
|
{INTEGER_ALIGN, 1, Align(1), Align(1)}, // i1
|
|
{INTEGER_ALIGN, 8, Align(1), Align(1)}, // i8
|
|
{INTEGER_ALIGN, 16, Align(2), Align(2)}, // i16
|
|
{INTEGER_ALIGN, 32, Align(4), Align(4)}, // i32
|
|
{INTEGER_ALIGN, 64, Align(4), Align(8)}, // i64
|
|
{FLOAT_ALIGN, 16, Align(2), Align(2)}, // half
|
|
{FLOAT_ALIGN, 32, Align(4), Align(4)}, // float
|
|
{FLOAT_ALIGN, 64, Align(8), Align(8)}, // double
|
|
{FLOAT_ALIGN, 128, Align(16), Align(16)}, // ppcf128, quad, ...
|
|
{VECTOR_ALIGN, 64, Align(8), Align(8)}, // v2i32, v1i64, ...
|
|
{VECTOR_ALIGN, 128, Align(16), Align(16)}, // v16i8, v8i16, v4i32, ...
|
|
{AGGREGATE_ALIGN, 0, Align(1), Align(8)} // struct
|
|
};
|
|
|
|
void DataLayout::reset(StringRef Desc) {
|
|
clear();
|
|
|
|
LayoutMap = nullptr;
|
|
BigEndian = false;
|
|
AllocaAddrSpace = 0;
|
|
StackNaturalAlign.reset();
|
|
ProgramAddrSpace = 0;
|
|
FunctionPtrAlign.reset();
|
|
TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
|
|
ManglingMode = MM_None;
|
|
NonIntegralAddressSpaces.clear();
|
|
|
|
// Default alignments
|
|
for (const LayoutAlignElem &E : DefaultAlignments) {
|
|
setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign,
|
|
E.TypeBitWidth);
|
|
}
|
|
setPointerAlignment(0, Align(8), Align(8), 8, 8);
|
|
|
|
parseSpecifier(Desc);
|
|
}
|
|
|
|
/// Checked version of split, to ensure mandatory subparts.
|
|
static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
|
|
assert(!Str.empty() && "parse error, string can't be empty here");
|
|
std::pair<StringRef, StringRef> Split = Str.split(Separator);
|
|
if (Split.second.empty() && Split.first != Str)
|
|
report_fatal_error("Trailing separator in datalayout string");
|
|
if (!Split.second.empty() && Split.first.empty())
|
|
report_fatal_error("Expected token before separator in datalayout string");
|
|
return Split;
|
|
}
|
|
|
|
/// Get an unsigned integer, including error checks.
|
|
static unsigned getInt(StringRef R) {
|
|
unsigned Result;
|
|
bool error = R.getAsInteger(10, Result); (void)error;
|
|
if (error)
|
|
report_fatal_error("not a number, or does not fit in an unsigned int");
|
|
return Result;
|
|
}
|
|
|
|
/// Convert bits into bytes. Assert if not a byte width multiple.
|
|
static unsigned inBytes(unsigned Bits) {
|
|
if (Bits % 8)
|
|
report_fatal_error("number of bits must be a byte width multiple");
|
|
return Bits / 8;
|
|
}
|
|
|
|
static unsigned getAddrSpace(StringRef R) {
|
|
unsigned AddrSpace = getInt(R);
|
|
if (!isUInt<24>(AddrSpace))
|
|
report_fatal_error("Invalid address space, must be a 24-bit integer");
|
|
return AddrSpace;
|
|
}
|
|
|
|
void DataLayout::parseSpecifier(StringRef Desc) {
|
|
StringRepresentation = Desc;
|
|
while (!Desc.empty()) {
|
|
// Split at '-'.
|
|
std::pair<StringRef, StringRef> Split = split(Desc, '-');
|
|
Desc = Split.second;
|
|
|
|
// Split at ':'.
|
|
Split = split(Split.first, ':');
|
|
|
|
// Aliases used below.
|
|
StringRef &Tok = Split.first; // Current token.
|
|
StringRef &Rest = Split.second; // The rest of the string.
|
|
|
|
if (Tok == "ni") {
|
|
do {
|
|
Split = split(Rest, ':');
|
|
Rest = Split.second;
|
|
unsigned AS = getInt(Split.first);
|
|
if (AS == 0)
|
|
report_fatal_error("Address space 0 can never be non-integral");
|
|
NonIntegralAddressSpaces.push_back(AS);
|
|
} while (!Rest.empty());
|
|
|
|
continue;
|
|
}
|
|
|
|
char Specifier = Tok.front();
|
|
Tok = Tok.substr(1);
|
|
|
|
switch (Specifier) {
|
|
case 's':
|
|
// Ignored for backward compatibility.
|
|
// FIXME: remove this on LLVM 4.0.
|
|
break;
|
|
case 'E':
|
|
BigEndian = true;
|
|
break;
|
|
case 'e':
|
|
BigEndian = false;
|
|
break;
|
|
case 'p': {
|
|
// Address space.
|
|
unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
|
|
if (!isUInt<24>(AddrSpace))
|
|
report_fatal_error("Invalid address space, must be a 24bit integer");
|
|
|
|
// Size.
|
|
if (Rest.empty())
|
|
report_fatal_error(
|
|
"Missing size specification for pointer in datalayout string");
|
|
Split = split(Rest, ':');
|
|
unsigned PointerMemSize = inBytes(getInt(Tok));
|
|
if (!PointerMemSize)
|
|
report_fatal_error("Invalid pointer size of 0 bytes");
|
|
|
|
// ABI alignment.
|
|
if (Rest.empty())
|
|
report_fatal_error(
|
|
"Missing alignment specification for pointer in datalayout string");
|
|
Split = split(Rest, ':');
|
|
unsigned PointerABIAlign = inBytes(getInt(Tok));
|
|
if (!isPowerOf2_64(PointerABIAlign))
|
|
report_fatal_error(
|
|
"Pointer ABI alignment must be a power of 2");
|
|
|
|
// Size of index used in GEP for address calculation.
|
|
// The parameter is optional. By default it is equal to size of pointer.
|
|
unsigned IndexSize = PointerMemSize;
|
|
|
|
// Preferred alignment.
|
|
unsigned PointerPrefAlign = PointerABIAlign;
|
|
if (!Rest.empty()) {
|
|
Split = split(Rest, ':');
|
|
PointerPrefAlign = inBytes(getInt(Tok));
|
|
if (!isPowerOf2_64(PointerPrefAlign))
|
|
report_fatal_error(
|
|
"Pointer preferred alignment must be a power of 2");
|
|
|
|
// Now read the index. It is the second optional parameter here.
|
|
if (!Rest.empty()) {
|
|
Split = split(Rest, ':');
|
|
IndexSize = inBytes(getInt(Tok));
|
|
if (!IndexSize)
|
|
report_fatal_error("Invalid index size of 0 bytes");
|
|
}
|
|
}
|
|
setPointerAlignment(AddrSpace, assumeAligned(PointerABIAlign),
|
|
assumeAligned(PointerPrefAlign), PointerMemSize,
|
|
IndexSize);
|
|
break;
|
|
}
|
|
case 'i':
|
|
case 'v':
|
|
case 'f':
|
|
case 'a': {
|
|
AlignTypeEnum AlignType;
|
|
switch (Specifier) {
|
|
default: llvm_unreachable("Unexpected specifier!");
|
|
case 'i': AlignType = INTEGER_ALIGN; break;
|
|
case 'v': AlignType = VECTOR_ALIGN; break;
|
|
case 'f': AlignType = FLOAT_ALIGN; break;
|
|
case 'a': AlignType = AGGREGATE_ALIGN; break;
|
|
}
|
|
|
|
// Bit size.
|
|
unsigned Size = Tok.empty() ? 0 : getInt(Tok);
|
|
|
|
if (AlignType == AGGREGATE_ALIGN && Size != 0)
|
|
report_fatal_error(
|
|
"Sized aggregate specification in datalayout string");
|
|
|
|
// ABI alignment.
|
|
if (Rest.empty())
|
|
report_fatal_error(
|
|
"Missing alignment specification in datalayout string");
|
|
Split = split(Rest, ':');
|
|
const unsigned ABIAlign = inBytes(getInt(Tok));
|
|
if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
|
|
report_fatal_error(
|
|
"ABI alignment specification must be >0 for non-aggregate types");
|
|
|
|
if (!isUInt<16>(ABIAlign))
|
|
report_fatal_error("Invalid ABI alignment, must be a 16bit integer");
|
|
if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
|
|
report_fatal_error("Invalid ABI alignment, must be a power of 2");
|
|
|
|
// Preferred alignment.
|
|
unsigned PrefAlign = ABIAlign;
|
|
if (!Rest.empty()) {
|
|
Split = split(Rest, ':');
|
|
PrefAlign = inBytes(getInt(Tok));
|
|
}
|
|
|
|
if (!isUInt<16>(PrefAlign))
|
|
report_fatal_error(
|
|
"Invalid preferred alignment, must be a 16bit integer");
|
|
if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
|
|
report_fatal_error("Invalid preferred alignment, must be a power of 2");
|
|
|
|
setAlignment(AlignType, assumeAligned(ABIAlign), assumeAligned(PrefAlign),
|
|
Size);
|
|
|
|
break;
|
|
}
|
|
case 'n': // Native integer types.
|
|
while (true) {
|
|
unsigned Width = getInt(Tok);
|
|
if (Width == 0)
|
|
report_fatal_error(
|
|
"Zero width native integer type in datalayout string");
|
|
LegalIntWidths.push_back(Width);
|
|
if (Rest.empty())
|
|
break;
|
|
Split = split(Rest, ':');
|
|
}
|
|
break;
|
|
case 'S': { // Stack natural alignment.
|
|
uint64_t Alignment = inBytes(getInt(Tok));
|
|
if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
|
|
report_fatal_error("Alignment is neither 0 nor a power of 2");
|
|
StackNaturalAlign = MaybeAlign(Alignment);
|
|
break;
|
|
}
|
|
case 'F': {
|
|
switch (Tok.front()) {
|
|
case 'i':
|
|
TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
|
|
break;
|
|
case 'n':
|
|
TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
|
|
break;
|
|
default:
|
|
report_fatal_error("Unknown function pointer alignment type in "
|
|
"datalayout string");
|
|
}
|
|
Tok = Tok.substr(1);
|
|
uint64_t Alignment = inBytes(getInt(Tok));
|
|
if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
|
|
report_fatal_error("Alignment is neither 0 nor a power of 2");
|
|
FunctionPtrAlign = MaybeAlign(Alignment);
|
|
break;
|
|
}
|
|
case 'P': { // Function address space.
|
|
ProgramAddrSpace = getAddrSpace(Tok);
|
|
break;
|
|
}
|
|
case 'A': { // Default stack/alloca address space.
|
|
AllocaAddrSpace = getAddrSpace(Tok);
|
|
break;
|
|
}
|
|
case 'm':
|
|
if (!Tok.empty())
|
|
report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
|
|
if (Rest.empty())
|
|
report_fatal_error("Expected mangling specifier in datalayout string");
|
|
if (Rest.size() > 1)
|
|
report_fatal_error("Unknown mangling specifier in datalayout string");
|
|
switch(Rest[0]) {
|
|
default:
|
|
report_fatal_error("Unknown mangling in datalayout string");
|
|
case 'e':
|
|
ManglingMode = MM_ELF;
|
|
break;
|
|
case 'o':
|
|
ManglingMode = MM_MachO;
|
|
break;
|
|
case 'm':
|
|
ManglingMode = MM_Mips;
|
|
break;
|
|
case 'w':
|
|
ManglingMode = MM_WinCOFF;
|
|
break;
|
|
case 'x':
|
|
ManglingMode = MM_WinCOFFX86;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
report_fatal_error("Unknown specifier in datalayout string");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
DataLayout::DataLayout(const Module *M) {
|
|
init(M);
|
|
}
|
|
|
|
void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
|
|
|
|
bool DataLayout::operator==(const DataLayout &Other) const {
|
|
bool Ret = BigEndian == Other.BigEndian &&
|
|
AllocaAddrSpace == Other.AllocaAddrSpace &&
|
|
StackNaturalAlign == Other.StackNaturalAlign &&
|
|
ProgramAddrSpace == Other.ProgramAddrSpace &&
|
|
FunctionPtrAlign == Other.FunctionPtrAlign &&
|
|
TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
|
|
ManglingMode == Other.ManglingMode &&
|
|
LegalIntWidths == Other.LegalIntWidths &&
|
|
Alignments == Other.Alignments && Pointers == Other.Pointers;
|
|
// Note: getStringRepresentation() might differs, it is not canonicalized
|
|
return Ret;
|
|
}
|
|
|
|
DataLayout::AlignmentsTy::iterator
|
|
DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
|
|
uint32_t BitWidth) {
|
|
auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
|
|
return partition_point(Alignments, [=](const LayoutAlignElem &E) {
|
|
return std::make_pair(E.AlignType, E.TypeBitWidth) < Pair;
|
|
});
|
|
}
|
|
|
|
void DataLayout::setAlignment(AlignTypeEnum align_type, Align abi_align,
|
|
Align pref_align, uint32_t bit_width) {
|
|
// AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
|
|
// uint16_t, it is unclear if there are requirements for alignment to be less
|
|
// than 2^16 other than storage. In the meantime we leave the restriction as
|
|
// an assert. See D67400 for context.
|
|
assert(Log2(abi_align) < 16 && Log2(pref_align) < 16 && "Alignment too big");
|
|
if (!isUInt<24>(bit_width))
|
|
report_fatal_error("Invalid bit width, must be a 24bit integer");
|
|
if (pref_align < abi_align)
|
|
report_fatal_error(
|
|
"Preferred alignment cannot be less than the ABI alignment");
|
|
|
|
AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
|
|
if (I != Alignments.end() &&
|
|
I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
|
|
// Update the abi, preferred alignments.
|
|
I->ABIAlign = abi_align;
|
|
I->PrefAlign = pref_align;
|
|
} else {
|
|
// Insert before I to keep the vector sorted.
|
|
Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
|
|
pref_align, bit_width));
|
|
}
|
|
}
|
|
|
|
DataLayout::PointersTy::iterator
|
|
DataLayout::findPointerLowerBound(uint32_t AddressSpace) {
|
|
return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace,
|
|
[](const PointerAlignElem &A, uint32_t AddressSpace) {
|
|
return A.AddressSpace < AddressSpace;
|
|
});
|
|
}
|
|
|
|
void DataLayout::setPointerAlignment(uint32_t AddrSpace, Align ABIAlign,
|
|
Align PrefAlign, uint32_t TypeByteWidth,
|
|
uint32_t IndexWidth) {
|
|
if (PrefAlign < ABIAlign)
|
|
report_fatal_error(
|
|
"Preferred alignment cannot be less than the ABI alignment");
|
|
|
|
PointersTy::iterator I = findPointerLowerBound(AddrSpace);
|
|
if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
|
|
Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign,
|
|
TypeByteWidth, IndexWidth));
|
|
} else {
|
|
I->ABIAlign = ABIAlign;
|
|
I->PrefAlign = PrefAlign;
|
|
I->TypeByteWidth = TypeByteWidth;
|
|
I->IndexWidth = IndexWidth;
|
|
}
|
|
}
|
|
|
|
/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
|
|
/// preferred if ABIInfo = false) the layout wants for the specified datatype.
|
|
Align DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth,
|
|
bool ABIInfo, Type *Ty) const {
|
|
AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth);
|
|
// See if we found an exact match. Of if we are looking for an integer type,
|
|
// but don't have an exact match take the next largest integer. This is where
|
|
// the lower_bound will point to when it fails an exact match.
|
|
if (I != Alignments.end() && I->AlignType == (unsigned)AlignType &&
|
|
(I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN))
|
|
return ABIInfo ? I->ABIAlign : I->PrefAlign;
|
|
|
|
if (AlignType == INTEGER_ALIGN) {
|
|
// If we didn't have a larger value try the largest value we have.
|
|
if (I != Alignments.begin()) {
|
|
--I; // Go to the previous entry and see if its an integer.
|
|
if (I->AlignType == INTEGER_ALIGN)
|
|
return ABIInfo ? I->ABIAlign : I->PrefAlign;
|
|
}
|
|
} else if (AlignType == VECTOR_ALIGN) {
|
|
// By default, use natural alignment for vector types. This is consistent
|
|
// with what clang and llvm-gcc do.
|
|
unsigned Alignment =
|
|
getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
|
|
Alignment *= cast<VectorType>(Ty)->getNumElements();
|
|
Alignment = PowerOf2Ceil(Alignment);
|
|
return Align(Alignment);
|
|
}
|
|
|
|
// If we still couldn't find a reasonable default alignment, fall back
|
|
// to a simple heuristic that the alignment is the first power of two
|
|
// greater-or-equal to the store size of the type. This is a reasonable
|
|
// approximation of reality, and if the user wanted something less
|
|
// less conservative, they should have specified it explicitly in the data
|
|
// layout.
|
|
unsigned Alignment = getTypeStoreSize(Ty);
|
|
Alignment = PowerOf2Ceil(Alignment);
|
|
return Align(Alignment);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class StructLayoutMap {
|
|
using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
|
|
LayoutInfoTy LayoutInfo;
|
|
|
|
public:
|
|
~StructLayoutMap() {
|
|
// Remove any layouts.
|
|
for (const auto &I : LayoutInfo) {
|
|
StructLayout *Value = I.second;
|
|
Value->~StructLayout();
|
|
free(Value);
|
|
}
|
|
}
|
|
|
|
StructLayout *&operator[](StructType *STy) {
|
|
return LayoutInfo[STy];
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void DataLayout::clear() {
|
|
LegalIntWidths.clear();
|
|
Alignments.clear();
|
|
Pointers.clear();
|
|
delete static_cast<StructLayoutMap *>(LayoutMap);
|
|
LayoutMap = nullptr;
|
|
}
|
|
|
|
DataLayout::~DataLayout() {
|
|
clear();
|
|
}
|
|
|
|
const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
|
|
if (!LayoutMap)
|
|
LayoutMap = new StructLayoutMap();
|
|
|
|
StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
|
|
StructLayout *&SL = (*STM)[Ty];
|
|
if (SL) return SL;
|
|
|
|
// Otherwise, create the struct layout. Because it is variable length, we
|
|
// malloc it, then use placement new.
|
|
int NumElts = Ty->getNumElements();
|
|
StructLayout *L = (StructLayout *)
|
|
safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
|
|
|
|
// Set SL before calling StructLayout's ctor. The ctor could cause other
|
|
// entries to be added to TheMap, invalidating our reference.
|
|
SL = L;
|
|
|
|
new (L) StructLayout(Ty, *this);
|
|
|
|
return L;
|
|
}
|
|
|
|
Align DataLayout::getPointerABIAlignment(unsigned AS) const {
|
|
PointersTy::const_iterator I = findPointerLowerBound(AS);
|
|
if (I == Pointers.end() || I->AddressSpace != AS) {
|
|
I = findPointerLowerBound(0);
|
|
assert(I->AddressSpace == 0);
|
|
}
|
|
return I->ABIAlign;
|
|
}
|
|
|
|
Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
|
|
PointersTy::const_iterator I = findPointerLowerBound(AS);
|
|
if (I == Pointers.end() || I->AddressSpace != AS) {
|
|
I = findPointerLowerBound(0);
|
|
assert(I->AddressSpace == 0);
|
|
}
|
|
return I->PrefAlign;
|
|
}
|
|
|
|
unsigned DataLayout::getPointerSize(unsigned AS) const {
|
|
PointersTy::const_iterator I = findPointerLowerBound(AS);
|
|
if (I == Pointers.end() || I->AddressSpace != AS) {
|
|
I = findPointerLowerBound(0);
|
|
assert(I->AddressSpace == 0);
|
|
}
|
|
return I->TypeByteWidth;
|
|
}
|
|
|
|
unsigned DataLayout::getMaxPointerSize() const {
|
|
unsigned MaxPointerSize = 0;
|
|
for (auto &P : Pointers)
|
|
MaxPointerSize = std::max(MaxPointerSize, P.TypeByteWidth);
|
|
|
|
return MaxPointerSize;
|
|
}
|
|
|
|
unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
|
|
assert(Ty->isPtrOrPtrVectorTy() &&
|
|
"This should only be called with a pointer or pointer vector type");
|
|
Ty = Ty->getScalarType();
|
|
return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
|
|
}
|
|
|
|
unsigned DataLayout::getIndexSize(unsigned AS) const {
|
|
PointersTy::const_iterator I = findPointerLowerBound(AS);
|
|
if (I == Pointers.end() || I->AddressSpace != AS) {
|
|
I = findPointerLowerBound(0);
|
|
assert(I->AddressSpace == 0);
|
|
}
|
|
return I->IndexWidth;
|
|
}
|
|
|
|
unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
|
|
assert(Ty->isPtrOrPtrVectorTy() &&
|
|
"This should only be called with a pointer or pointer vector type");
|
|
Ty = Ty->getScalarType();
|
|
return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
|
|
}
|
|
|
|
/*!
|
|
\param abi_or_pref Flag that determines which alignment is returned. true
|
|
returns the ABI alignment, false returns the preferred alignment.
|
|
\param Ty The underlying type for which alignment is determined.
|
|
|
|
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
|
|
== false) for the requested type \a Ty.
|
|
*/
|
|
Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
|
|
AlignTypeEnum AlignType;
|
|
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
// Early escape for the non-numeric types.
|
|
case Type::LabelTyID:
|
|
return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
|
|
case Type::PointerTyID: {
|
|
unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
|
|
return abi_or_pref ? getPointerABIAlignment(AS)
|
|
: getPointerPrefAlignment(AS);
|
|
}
|
|
case Type::ArrayTyID:
|
|
return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
|
|
|
|
case Type::StructTyID: {
|
|
// Packed structure types always have an ABI alignment of one.
|
|
if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
|
|
return Align::None();
|
|
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
|
|
const Align Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
|
|
return std::max(Align, Layout->getAlignment());
|
|
}
|
|
case Type::IntegerTyID:
|
|
AlignType = INTEGER_ALIGN;
|
|
break;
|
|
case Type::HalfTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
// PPC_FP128TyID and FP128TyID have different data contents, but the
|
|
// same size and alignment, so they look the same here.
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
case Type::X86_FP80TyID:
|
|
AlignType = FLOAT_ALIGN;
|
|
break;
|
|
case Type::X86_MMXTyID:
|
|
case Type::VectorTyID:
|
|
AlignType = VECTOR_ALIGN;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Bad type for getAlignment!!!");
|
|
}
|
|
|
|
// If we're dealing with a scalable vector, we just need the known minimum
|
|
// size for determining alignment. If not, we'll get the exact size.
|
|
return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty).getKnownMinSize(),
|
|
abi_or_pref, Ty);
|
|
}
|
|
|
|
unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
|
|
return getAlignment(Ty, true).value();
|
|
}
|
|
|
|
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
|
|
/// an integer type of the specified bitwidth.
|
|
Align DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
|
|
return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr);
|
|
}
|
|
|
|
unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
|
|
return getAlignment(Ty, false).value();
|
|
}
|
|
|
|
IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
|
|
unsigned AddressSpace) const {
|
|
return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
|
|
}
|
|
|
|
Type *DataLayout::getIntPtrType(Type *Ty) const {
|
|
assert(Ty->isPtrOrPtrVectorTy() &&
|
|
"Expected a pointer or pointer vector type.");
|
|
unsigned NumBits = getIndexTypeSizeInBits(Ty);
|
|
IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
|
|
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::get(IntTy, VecTy->getNumElements());
|
|
return IntTy;
|
|
}
|
|
|
|
Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
|
|
for (unsigned LegalIntWidth : LegalIntWidths)
|
|
if (Width <= LegalIntWidth)
|
|
return Type::getIntNTy(C, LegalIntWidth);
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
|
|
auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
|
|
return Max != LegalIntWidths.end() ? *Max : 0;
|
|
}
|
|
|
|
Type *DataLayout::getIndexType(Type *Ty) const {
|
|
assert(Ty->isPtrOrPtrVectorTy() &&
|
|
"Expected a pointer or pointer vector type.");
|
|
unsigned NumBits = getIndexTypeSizeInBits(Ty);
|
|
IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
|
|
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::get(IntTy, VecTy->getNumElements());
|
|
return IntTy;
|
|
}
|
|
|
|
int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
|
|
ArrayRef<Value *> Indices) const {
|
|
int64_t Result = 0;
|
|
|
|
generic_gep_type_iterator<Value* const*>
|
|
GTI = gep_type_begin(ElemTy, Indices),
|
|
GTE = gep_type_end(ElemTy, Indices);
|
|
for (; GTI != GTE; ++GTI) {
|
|
Value *Idx = GTI.getOperand();
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
|
|
unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
|
|
|
|
// Get structure layout information...
|
|
const StructLayout *Layout = getStructLayout(STy);
|
|
|
|
// Add in the offset, as calculated by the structure layout info...
|
|
Result += Layout->getElementOffset(FieldNo);
|
|
} else {
|
|
// Get the array index and the size of each array element.
|
|
if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
|
|
Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// getPreferredAlignment - Return the preferred alignment of the specified
|
|
/// global. This includes an explicitly requested alignment (if the global
|
|
/// has one).
|
|
unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
|
|
unsigned GVAlignment = GV->getAlignment();
|
|
// If a section is specified, always precisely honor explicit alignment,
|
|
// so we don't insert padding into a section we don't control.
|
|
if (GVAlignment && GV->hasSection())
|
|
return GVAlignment;
|
|
|
|
// If no explicit alignment is specified, compute the alignment based on
|
|
// the IR type. If an alignment is specified, increase it to match the ABI
|
|
// alignment of the IR type.
|
|
//
|
|
// FIXME: Not sure it makes sense to use the alignment of the type if
|
|
// there's already an explicit alignment specification.
|
|
Type *ElemType = GV->getValueType();
|
|
unsigned Alignment = getPrefTypeAlignment(ElemType);
|
|
if (GVAlignment >= Alignment) {
|
|
Alignment = GVAlignment;
|
|
} else if (GVAlignment != 0) {
|
|
Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
|
|
}
|
|
|
|
// If no explicit alignment is specified, and the global is large, increase
|
|
// the alignment to 16.
|
|
// FIXME: Why 16, specifically?
|
|
if (GV->hasInitializer() && GVAlignment == 0) {
|
|
if (Alignment < 16) {
|
|
// If the global is not external, see if it is large. If so, give it a
|
|
// larger alignment.
|
|
if (getTypeSizeInBits(ElemType) > 128)
|
|
Alignment = 16; // 16-byte alignment.
|
|
}
|
|
}
|
|
return Alignment;
|
|
}
|
|
|
|
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
|
/// specified global, returned in log form. This includes an explicitly
|
|
/// requested alignment (if the global has one).
|
|
unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
|
|
return Log2_32(getPreferredAlignment(GV));
|
|
}
|