1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/unittests/ADT/STLExtrasTest.cpp
2016-12-04 10:26:53 +00:00

257 lines
7.2 KiB
C++

//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"
#include <vector>
using namespace llvm;
namespace {
int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }
TEST(STLExtrasTest, Rank) {
// We shouldn't get ambiguities and should select the overload of the same
// rank as the argument.
EXPECT_EQ(0, f(rank<0>()));
EXPECT_EQ(1, f(rank<1>()));
EXPECT_EQ(2, f(rank<2>()));
// This overload is missing so we end up back at 2.
EXPECT_EQ(2, f(rank<3>()));
// But going past 3 should work fine.
EXPECT_EQ(4, f(rank<4>()));
// And we can even go higher and just fall back to the last overload.
EXPECT_EQ(4, f(rank<5>()));
EXPECT_EQ(4, f(rank<6>()));
}
TEST(STLExtrasTest, EnumerateLValue) {
// Test that a simple LValue can be enumerated and gives correct results with
// multiple types, including the empty container.
std::vector<char> foo = {'a', 'b', 'c'};
typedef std::pair<std::size_t, char> CharPairType;
std::vector<CharPairType> CharResults;
for (auto X : llvm::enumerate(foo)) {
CharResults.emplace_back(X.Index, X.Value);
}
ASSERT_EQ(3u, CharResults.size());
EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
// Test a const range of a different type.
typedef std::pair<std::size_t, int> IntPairType;
std::vector<IntPairType> IntResults;
const std::vector<int> bar = {1, 2, 3};
for (auto X : llvm::enumerate(bar)) {
IntResults.emplace_back(X.Index, X.Value);
}
ASSERT_EQ(3u, IntResults.size());
EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
// Test an empty range.
IntResults.clear();
const std::vector<int> baz;
for (auto X : llvm::enumerate(baz)) {
IntResults.emplace_back(X.Index, X.Value);
}
EXPECT_TRUE(IntResults.empty());
}
TEST(STLExtrasTest, EnumerateModifyLValue) {
// Test that you can modify the underlying entries of an lvalue range through
// the enumeration iterator.
std::vector<char> foo = {'a', 'b', 'c'};
for (auto X : llvm::enumerate(foo)) {
++X.Value;
}
EXPECT_EQ('b', foo[0]);
EXPECT_EQ('c', foo[1]);
EXPECT_EQ('d', foo[2]);
}
TEST(STLExtrasTest, EnumerateRValueRef) {
// Test that an rvalue can be enumerated.
typedef std::pair<std::size_t, int> PairType;
std::vector<PairType> Results;
auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
Results.emplace_back(X.Index, X.Value);
}
ASSERT_EQ(3u, Results.size());
EXPECT_EQ(PairType(0u, 1), Results[0]);
EXPECT_EQ(PairType(1u, 2), Results[1]);
EXPECT_EQ(PairType(2u, 3), Results[2]);
}
TEST(STLExtrasTest, EnumerateModifyRValue) {
// Test that when enumerating an rvalue, modification still works (even if
// this isn't terribly useful, it at least shows that we haven't snuck an
// extra const in there somewhere.
typedef std::pair<std::size_t, char> PairType;
std::vector<PairType> Results;
for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
++X.Value;
Results.emplace_back(X.Index, X.Value);
}
ASSERT_EQ(3u, Results.size());
EXPECT_EQ(PairType(0u, '2'), Results[0]);
EXPECT_EQ(PairType(1u, '3'), Results[1]);
EXPECT_EQ(PairType(2u, '4'), Results[2]);
}
template <bool B> struct CanMove {};
template <> struct CanMove<false> {
CanMove(CanMove &&) = delete;
CanMove() = default;
CanMove(const CanMove &) = default;
};
template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
CanCopy(const CanCopy &) = delete;
CanCopy() = default;
CanCopy(CanCopy &&) = default;
};
template <bool Moveable, bool Copyable>
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
++M;
}
~Range() { ++D; }
int &C;
int &M;
int &D;
int *begin() { return nullptr; }
int *end() { return nullptr; }
};
TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
// Test that when enumerating lvalues and rvalues, there are no surprise
// copies or moves.
// With an rvalue, it should not be destroyed until the end of the scope.
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
// Doesn't compile. rvalue ranges must be moveable.
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
Copies = Moves = Destructors = 0;
// With an lvalue, it should not be destroyed even after the end of the scope.
// lvalue ranges need be neither copyable nor moveable.
Range<false, false> R(Copies, Moves, Destructors);
{
auto Enumerator = enumerate(R);
(void)Enumerator;
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
TEST(STLExtrasTest, ApplyTuple) {
auto T = std::make_tuple(1, 3, 7);
auto U = llvm::apply_tuple(
[](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
T);
EXPECT_EQ(-2, std::get<0>(U));
EXPECT_EQ(-4, std::get<1>(U));
EXPECT_EQ(6, std::get<2>(U));
auto V = llvm::apply_tuple(
[](int A, int B, int C) {
return std::make_tuple(std::make_pair(A, char('A' + A)),
std::make_pair(B, char('A' + B)),
std::make_pair(C, char('A' + C)));
},
T);
EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}
class apply_variadic {
static int apply_one(int X) { return X + 1; }
static char apply_one(char C) { return C + 1; }
static StringRef apply_one(StringRef S) { return S.drop_back(); }
public:
template <typename... Ts>
auto operator()(Ts &&... Items)
-> decltype(std::make_tuple(apply_one(Items)...)) {
return std::make_tuple(apply_one(Items)...);
}
};
TEST(STLExtrasTest, ApplyTupleVariadic) {
auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
auto Values = apply_tuple(apply_variadic(), Items);
EXPECT_EQ(2, std::get<0>(Values));
EXPECT_EQ("Tes", std::get<1>(Values));
EXPECT_EQ('Y', std::get<2>(Values));
}
TEST(STLExtrasTest, CountAdaptor) {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(1);
v.push_back(4);
v.push_back(3);
v.push_back(2);
v.push_back(1);
EXPECT_EQ(3, count(v, 1));
EXPECT_EQ(2, count(v, 2));
EXPECT_EQ(1, count(v, 3));
EXPECT_EQ(1, count(v, 4));
}
}