1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/SystemZ/SystemZShortenInst.cpp
Ulrich Weigand 73b770d782 [SystemZ] Add CodeGen support for scalar f64 ops in vector registers
The z13 vector facility includes some instructions that operate only on the
high f64 in a v2f64, effectively extending the FP register set from 16
to 32 registers.  It's still better to use the old instructions if the
operands happen to fit though, since the older instructions have a shorter
encoding.

Based on a patch by Richard Sandiford.

llvm-svn: 236524
2015-05-05 19:28:34 +00:00

294 lines
9.1 KiB
C++

//===-- SystemZShortenInst.cpp - Instruction-shortening pass --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass tries to replace instructions with shorter forms. For example,
// IILF can be replaced with LLILL or LLILH if the constant fits and if the
// other 32 bits of the GR64 destination are not live.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
using namespace llvm;
#define DEBUG_TYPE "systemz-shorten-inst"
namespace {
class SystemZShortenInst : public MachineFunctionPass {
public:
static char ID;
SystemZShortenInst(const SystemZTargetMachine &tm);
const char *getPassName() const override {
return "SystemZ Instruction Shortening";
}
bool processBlock(MachineBasicBlock &MBB);
bool runOnMachineFunction(MachineFunction &F) override;
private:
bool shortenIIF(MachineInstr &MI, unsigned *GPRMap, unsigned LiveOther,
unsigned LLIxL, unsigned LLIxH);
bool shortenOn0(MachineInstr &MI, unsigned Opcode);
bool shortenOn01(MachineInstr &MI, unsigned Opcode);
bool shortenOn001(MachineInstr &MI, unsigned Opcode);
bool shortenFPConv(MachineInstr &MI, unsigned Opcode);
const SystemZInstrInfo *TII;
// LowGPRs[I] has bit N set if LLVM register I includes the low
// word of GPR N. HighGPRs is the same for the high word.
unsigned LowGPRs[SystemZ::NUM_TARGET_REGS];
unsigned HighGPRs[SystemZ::NUM_TARGET_REGS];
};
char SystemZShortenInst::ID = 0;
} // end anonymous namespace
FunctionPass *llvm::createSystemZShortenInstPass(SystemZTargetMachine &TM) {
return new SystemZShortenInst(TM);
}
SystemZShortenInst::SystemZShortenInst(const SystemZTargetMachine &tm)
: MachineFunctionPass(ID), TII(nullptr), LowGPRs(), HighGPRs() {
// Set up LowGPRs and HighGPRs.
for (unsigned I = 0; I < 16; ++I) {
LowGPRs[SystemZMC::GR32Regs[I]] |= 1 << I;
LowGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
HighGPRs[SystemZMC::GRH32Regs[I]] |= 1 << I;
HighGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
if (unsigned GR128 = SystemZMC::GR128Regs[I]) {
LowGPRs[GR128] |= 3 << I;
HighGPRs[GR128] |= 3 << I;
}
}
}
// MI loads one word of a GPR using an IIxF instruction and LLIxL and LLIxH
// are the halfword immediate loads for the same word. Try to use one of them
// instead of IIxF. If MI loads the high word, GPRMap[X] is the set of high
// words referenced by LLVM register X while LiveOther is the mask of low
// words that are currently live, and vice versa.
bool SystemZShortenInst::shortenIIF(MachineInstr &MI, unsigned *GPRMap,
unsigned LiveOther, unsigned LLIxL,
unsigned LLIxH) {
unsigned Reg = MI.getOperand(0).getReg();
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
unsigned GPRs = GPRMap[Reg];
assert(GPRs != 0 && "Register must be a GPR");
if (GPRs & LiveOther)
return false;
uint64_t Imm = MI.getOperand(1).getImm();
if (SystemZ::isImmLL(Imm)) {
MI.setDesc(TII->get(LLIxL));
MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
return true;
}
if (SystemZ::isImmLH(Imm)) {
MI.setDesc(TII->get(LLIxH));
MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
MI.getOperand(1).setImm(Imm >> 16);
return true;
}
return false;
}
// Change MI's opcode to Opcode if register operand 0 has a 4-bit encoding.
bool SystemZShortenInst::shortenOn0(MachineInstr &MI, unsigned Opcode) {
if (SystemZMC::getFirstReg(MI.getOperand(0).getReg()) < 16) {
MI.setDesc(TII->get(Opcode));
return true;
}
return false;
}
// Change MI's opcode to Opcode if register operands 0 and 1 have a
// 4-bit encoding.
bool SystemZShortenInst::shortenOn01(MachineInstr &MI, unsigned Opcode) {
if (SystemZMC::getFirstReg(MI.getOperand(0).getReg()) < 16 &&
SystemZMC::getFirstReg(MI.getOperand(1).getReg()) < 16) {
MI.setDesc(TII->get(Opcode));
return true;
}
return false;
}
// Change MI's opcode to Opcode if register operands 0, 1 and 2 have a
// 4-bit encoding and if operands 0 and 1 are tied.
bool SystemZShortenInst::shortenOn001(MachineInstr &MI, unsigned Opcode) {
if (SystemZMC::getFirstReg(MI.getOperand(0).getReg()) < 16 &&
MI.getOperand(1).getReg() == MI.getOperand(0).getReg() &&
SystemZMC::getFirstReg(MI.getOperand(2).getReg()) < 16) {
MI.setDesc(TII->get(Opcode));
return true;
}
return false;
}
// MI is a vector-style conversion instruction with the operand order:
// destination, source, exact-suppress, rounding-mode. If both registers
// have a 4-bit encoding then change it to Opcode, which has operand order:
// destination, rouding-mode, source, exact-suppress.
bool SystemZShortenInst::shortenFPConv(MachineInstr &MI, unsigned Opcode) {
if (SystemZMC::getFirstReg(MI.getOperand(0).getReg()) < 16 &&
SystemZMC::getFirstReg(MI.getOperand(1).getReg()) < 16) {
MachineOperand Dest(MI.getOperand(0));
MachineOperand Src(MI.getOperand(1));
MachineOperand Suppress(MI.getOperand(2));
MachineOperand Mode(MI.getOperand(3));
MI.RemoveOperand(3);
MI.RemoveOperand(2);
MI.RemoveOperand(1);
MI.RemoveOperand(0);
MI.setDesc(TII->get(Opcode));
MachineInstrBuilder(*MI.getParent()->getParent(), &MI)
.addOperand(Dest)
.addOperand(Mode)
.addOperand(Src)
.addOperand(Suppress);
return true;
}
return false;
}
// Process all instructions in MBB. Return true if something changed.
bool SystemZShortenInst::processBlock(MachineBasicBlock &MBB) {
bool Changed = false;
// Work out which words are live on exit from the block.
unsigned LiveLow = 0;
unsigned LiveHigh = 0;
for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) {
for (auto LI = (*SI)->livein_begin(), LE = (*SI)->livein_end();
LI != LE; ++LI) {
unsigned Reg = *LI;
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
LiveLow |= LowGPRs[Reg];
LiveHigh |= HighGPRs[Reg];
}
}
// Iterate backwards through the block looking for instructions to change.
for (auto MBBI = MBB.rbegin(), MBBE = MBB.rend(); MBBI != MBBE; ++MBBI) {
MachineInstr &MI = *MBBI;
switch (MI.getOpcode()) {
case SystemZ::IILF:
Changed |= shortenIIF(MI, LowGPRs, LiveHigh, SystemZ::LLILL,
SystemZ::LLILH);
break;
case SystemZ::IIHF:
Changed |= shortenIIF(MI, HighGPRs, LiveLow, SystemZ::LLIHL,
SystemZ::LLIHH);
break;
case SystemZ::WFADB:
Changed |= shortenOn001(MI, SystemZ::ADBR);
break;
case SystemZ::WFDDB:
Changed |= shortenOn001(MI, SystemZ::DDBR);
break;
case SystemZ::WFIDB:
Changed |= shortenFPConv(MI, SystemZ::FIDBRA);
break;
case SystemZ::WLDEB:
Changed |= shortenOn01(MI, SystemZ::LDEBR);
break;
case SystemZ::WLEDB:
Changed |= shortenFPConv(MI, SystemZ::LEDBRA);
break;
case SystemZ::WFMDB:
Changed |= shortenOn001(MI, SystemZ::MDBR);
break;
case SystemZ::WFLCDB:
Changed |= shortenOn01(MI, SystemZ::LCDBR);
break;
case SystemZ::WFLNDB:
Changed |= shortenOn01(MI, SystemZ::LNDBR);
break;
case SystemZ::WFLPDB:
Changed |= shortenOn01(MI, SystemZ::LPDBR);
break;
case SystemZ::WFSQDB:
Changed |= shortenOn01(MI, SystemZ::SQDBR);
break;
case SystemZ::WFSDB:
Changed |= shortenOn001(MI, SystemZ::SDBR);
break;
case SystemZ::WFCDB:
Changed |= shortenOn01(MI, SystemZ::CDBR);
break;
case SystemZ::VL32:
// For z13 we prefer LDE over LE to avoid partial register dependencies.
Changed |= shortenOn0(MI, SystemZ::LDE32);
break;
case SystemZ::VST32:
Changed |= shortenOn0(MI, SystemZ::STE);
break;
case SystemZ::VL64:
Changed |= shortenOn0(MI, SystemZ::LD);
break;
case SystemZ::VST64:
Changed |= shortenOn0(MI, SystemZ::STD);
break;
}
unsigned UsedLow = 0;
unsigned UsedHigh = 0;
for (auto MOI = MI.operands_begin(), MOE = MI.operands_end();
MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
if (MO.isReg()) {
if (unsigned Reg = MO.getReg()) {
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
if (MO.isDef()) {
LiveLow &= ~LowGPRs[Reg];
LiveHigh &= ~HighGPRs[Reg];
} else if (!MO.isUndef()) {
UsedLow |= LowGPRs[Reg];
UsedHigh |= HighGPRs[Reg];
}
}
}
}
LiveLow |= UsedLow;
LiveHigh |= UsedHigh;
}
return Changed;
}
bool SystemZShortenInst::runOnMachineFunction(MachineFunction &F) {
TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
bool Changed = false;
for (auto &MBB : F)
Changed |= processBlock(MBB);
return Changed;
}