mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
0dff68630e
Summary: This is a recommit, this originally landed in rL370454 but was subsequently reverted in rL370788 due to https://bugs.llvm.org/show_bug.cgi?id=43206 The reduced testcase was added to bcmp-negative-tests.ll as @pr43206_different_loops - we must ensure that the SCEV's we got are both for the same loop we are currently investigating. Original commit message: @mclow.lists brought up this issue up in IRC. It is a reasonably common problem to compare some two values for equality. Those may be just some integers, strings or arrays of integers. In C, there is `memcmp()`, `bcmp()` functions. In C++, there exists `std::equal()` algorithm. One can also write that function manually. libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ libc++ does not do anything like that, it simply relies on simple C++'s `operator==()`. https://godbolt.org/z/er0Zwf (GOOD!) So likely, there exists a certain performance opportunities. Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that is using `memcmp()` (in this case, compiled with modified compiler). {F8768213} ``` #include <algorithm> #include <cmath> #include <cstdint> #include <iterator> #include <limits> #include <random> #include <type_traits> #include <utility> #include <vector> #include "benchmark/benchmark.h" template <class T> bool equal(T* a, T* a_end, T* b) noexcept { for (; a != a_end; ++a, ++b) { if (*a != *b) return false; } return true; } template <typename T> std::vector<T> getVectorOfRandomNumbers(size_t count) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(), std::numeric_limits<T>::max()); std::vector<T> v; v.reserve(count); std::generate_n(std::back_inserter(v), count, [&dis, &gen]() { return dis(gen); }); assert(v.size() == count); return v; } struct Identical { template <typename T> static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) { auto Tmp = getVectorOfRandomNumbers<T>(count); return std::make_pair(Tmp, std::move(Tmp)); } }; struct InequalHalfway { template <typename T> static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) { auto V0 = getVectorOfRandomNumbers<T>(count); auto V1 = V0; V1[V1.size() / size_t(2)]++; // just change the value. return std::make_pair(std::move(V0), std::move(V1)); } }; template <class T, class Gen> void BM_bcmp(benchmark::State& state) { const size_t Length = state.range(0); const std::pair<std::vector<T>, std::vector<T>> Data = Gen::template Gen<T>(Length); const std::vector<T>& a = Data.first; const std::vector<T>& b = Data.second; assert(a.size() == Length && b.size() == a.size()); benchmark::ClobberMemory(); benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(a.data()); benchmark::DoNotOptimize(b); benchmark::DoNotOptimize(b.data()); for (auto _ : state) { const bool is_equal = equal(a.data(), a.data() + a.size(), b.data()); benchmark::DoNotOptimize(is_equal); } state.SetComplexityN(Length); state.counters["eltcnt"] = benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant); state.counters["eltcnt/sec"] = benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate); const size_t BytesRead = 2 * sizeof(T) * Length; state.counters["bytes_read/iteration"] = benchmark::Counter(BytesRead, benchmark::Counter::kDefaults, benchmark::Counter::OneK::kIs1024); state.counters["bytes_read/sec"] = benchmark::Counter( BytesRead, benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024); } template <typename T> static void CustomArguments(benchmark::internal::Benchmark* b) { const size_t L2SizeBytes = []() { for (const benchmark::CPUInfo::CacheInfo& I : benchmark::CPUInfo::Get().caches) { if (I.level == 2) return I.size; } return 0; }(); // What is the largest range we can check to always fit within given L2 cache? const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 / /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2; b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN); } BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical) ->Apply(CustomArguments<uint8_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical) ->Apply(CustomArguments<uint16_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical) ->Apply(CustomArguments<uint32_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical) ->Apply(CustomArguments<uint64_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway) ->Apply(CustomArguments<uint8_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway) ->Apply(CustomArguments<uint16_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway) ->Apply(CustomArguments<uint32_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway) ->Apply(CustomArguments<uint64_t>); ``` {F8768210} ``` $ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx 2019-04-25 21:17:11 Running build-old/test/llvm-bcmp-bench Run on (8 X 4000 MHz CPU s) CPU Caches: L1 Data 16K (x8) L1 Instruction 64K (x4) L2 Unified 2048K (x4) L3 Unified 8192K (x1) Load Average: 0.65, 3.90, 4.14 --------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... --------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N BM_bcmp<uint8_t, Identical>_RMS 8 % 8 % <...> BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N BM_bcmp<uint16_t, Identical>_RMS 25 % 25 % <...> BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N BM_bcmp<uint32_t, Identical>_RMS 42 % 42 % <...> BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N BM_bcmp<uint64_t, Identical>_RMS 27 % 27 % <...> BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 % <...> BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 % <...> BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 % <...> BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 % RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0 2019-04-25 21:19:29 Running build-new/test/llvm-bcmp-bench Run on (8 X 4000 MHz CPU s) CPU Caches: L1 Data 16K (x8) L1 Instruction 64K (x4) L2 Unified 2048K (x4) L3 Unified 8192K (x1) Load Average: 1.01, 2.85, 3.71 --------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... --------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N BM_bcmp<uint8_t, Identical>_RMS 37 % 37 % <...> BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N BM_bcmp<uint16_t, Identical>_RMS 34 % 34 % <...> BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N BM_bcmp<uint32_t, Identical>_RMS 35 % 35 % <...> BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N BM_bcmp<uint64_t, Identical>_RMS 33 % 33 % <...> BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 % <...> BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 % <...> BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 % <...> BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 % Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench Benchmark Time CPU Time Old Time New CPU Old CPU New --------------------------------------------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590 <...> BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948 <...> BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627 <...> BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855 <...> BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569 <...> BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547 <...> BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394 <...> BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498 ``` What can we tell from the benchmark? * Performance of naive equality check somewhat improves with element size, maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s for uint64_t. I think, that instability implies performance problems. * Performance of `memcmp()`-aware benchmark always maxes out at around bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the naive variant! * eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and linearly decreases with element size. For uint64_t, it's ~4x+ the elements/second. * The call obvious is more pricey than the loop, with small element count. As it can be seen from the full output {F8768210}, the `memcmp()` is almost universally worse, independent of the element size (and thus buffer size) when element count is less than 8. So all in all, bcmp idiom does indeed pose untapped performance headroom. This diff does implement said idiom recognition. I think a reasonable test coverage is present, but do tell if there is anything obvious missing. Now, quality. This does succeed to build and pass the test-suite, at least without any non-bundled elements. {F8768216} {F8768217} This transform fires 91 times: ``` $ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json Tests: 1149 Metric: loop-idiom.NumBCmp Program result-new MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00 MultiSource/Applications/d/make_dparser 3.00 SingleSource/UnitTests/vla 2.00 MultiSource/Applications/Burg/burg 1.00 MultiSourc.../Applications/JM/lencod/lencod 1.00 MultiSource/Applications/lemon/lemon 1.00 MultiSource/Benchmarks/Bullet/bullet 1.00 MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00 MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00 MultiSourc...Prolangs-C/simulator/simulator 1.00 ``` The size changes are: I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look. ``` $ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash Tests: 1149 Same hash: 907 (filtered out) Remaining: 242 Metric: size..text Program result-old result-new diff test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6% test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5% test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1% test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1% test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1% test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1% test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0% test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0% test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0% test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0% test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan% test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan% test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan% test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan% test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan% Geomean difference nan% result-old result-new diff count 1.000000e+01 10.00000 10.000000 mean 3.152090e+05 311695.40000 0.006749 std 3.790398e+05 372091.42232 0.036605 min 7.530000e+02 833.00000 -0.034981 25% 4.243300e+04 42401.00000 -0.000866 50% 1.197370e+05 119689.00000 -0.000392 75% 6.397050e+05 639705.00000 -0.000005 max 1.001697e+06 966657.00000 0.106242 ``` I don't have timings though. And now to the code. The basic idea is to completely replace the whole loop. If we can't fully kill it, don't transform. I have left one or two comments in the code, so hopefully it can be understood. Also, there is a few TODO's that i have left for follow-ups: * widening of `memcmp()`/`bcmp()` * step smaller than the comparison size * Metadata propagation * more than two blocks as long as there is still a single backedge? * ??? Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet Reviewed By: courbet Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists Tags: #llvm Differential Revision: https://reviews.llvm.org/D61144 llvm-svn: 374662
2689 lines
106 KiB
C++
2689 lines
106 KiB
C++
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements an idiom recognizer that transforms simple loops into a
|
|
// non-loop form. In cases that this kicks in, it can be a significant
|
|
// performance win.
|
|
//
|
|
// If compiling for code size we avoid idiom recognition if the resulting
|
|
// code could be larger than the code for the original loop. One way this could
|
|
// happen is if the loop is not removable after idiom recognition due to the
|
|
// presence of non-idiom instructions. The initial implementation of the
|
|
// heuristics applies to idioms in multi-block loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// TODO List:
|
|
//
|
|
// Future loop memory idioms to recognize:
|
|
// memcmp, memmove, strlen, etc.
|
|
// Future floating point idioms to recognize in -ffast-math mode:
|
|
// fpowi
|
|
// Future integer operation idioms to recognize:
|
|
// ctpop
|
|
//
|
|
// Beware that isel's default lowering for ctpop is highly inefficient for
|
|
// i64 and larger types when i64 is legal and the value has few bits set. It
|
|
// would be good to enhance isel to emit a loop for ctpop in this case.
|
|
//
|
|
// This could recognize common matrix multiplies and dot product idioms and
|
|
// replace them with calls to BLAS (if linked in??).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-idiom"
|
|
|
|
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
|
|
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
|
|
STATISTIC(NumBCmp, "Number of memcmp's formed from loop 2xload+eq-compare");
|
|
|
|
static cl::opt<bool> UseLIRCodeSizeHeurs(
|
|
"use-lir-code-size-heurs",
|
|
cl::desc("Use loop idiom recognition code size heuristics when compiling"
|
|
"with -Os/-Oz"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
// FIXME: reinventing the wheel much? Is there a cleaner solution?
|
|
struct PMAbstraction {
|
|
virtual void markLoopAsDeleted(Loop *L) = 0;
|
|
virtual ~PMAbstraction() = default;
|
|
};
|
|
struct LegacyPMAbstraction : PMAbstraction {
|
|
LPPassManager &LPM;
|
|
LegacyPMAbstraction(LPPassManager &LPM) : LPM(LPM) {}
|
|
virtual ~LegacyPMAbstraction() = default;
|
|
void markLoopAsDeleted(Loop *L) override { LPM.markLoopAsDeleted(*L); }
|
|
};
|
|
struct NewPMAbstraction : PMAbstraction {
|
|
LPMUpdater &Updater;
|
|
NewPMAbstraction(LPMUpdater &Updater) : Updater(Updater) {}
|
|
virtual ~NewPMAbstraction() = default;
|
|
void markLoopAsDeleted(Loop *L) override {
|
|
Updater.markLoopAsDeleted(*L, L->getName());
|
|
}
|
|
};
|
|
|
|
class LoopIdiomRecognize {
|
|
Loop *CurLoop = nullptr;
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
ScalarEvolution *SE;
|
|
TargetLibraryInfo *TLI;
|
|
const TargetTransformInfo *TTI;
|
|
const DataLayout *DL;
|
|
PMAbstraction &LoopDeleter;
|
|
OptimizationRemarkEmitter &ORE;
|
|
bool ApplyCodeSizeHeuristics;
|
|
|
|
public:
|
|
explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
|
|
LoopInfo *LI, ScalarEvolution *SE,
|
|
TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
const DataLayout *DL, PMAbstraction &LoopDeleter,
|
|
OptimizationRemarkEmitter &ORE)
|
|
: AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL),
|
|
LoopDeleter(LoopDeleter), ORE(ORE) {}
|
|
|
|
bool runOnLoop(Loop *L);
|
|
|
|
private:
|
|
using StoreList = SmallVector<StoreInst *, 8>;
|
|
using StoreListMap = MapVector<Value *, StoreList>;
|
|
|
|
StoreListMap StoreRefsForMemset;
|
|
StoreListMap StoreRefsForMemsetPattern;
|
|
StoreList StoreRefsForMemcpy;
|
|
bool HasMemset;
|
|
bool HasMemsetPattern;
|
|
bool HasMemcpy;
|
|
bool HasMemCmp;
|
|
bool HasBCmp;
|
|
|
|
/// Return code for isLegalStore()
|
|
enum LegalStoreKind {
|
|
None = 0,
|
|
Memset,
|
|
MemsetPattern,
|
|
Memcpy,
|
|
UnorderedAtomicMemcpy,
|
|
DontUse // Dummy retval never to be used. Allows catching errors in retval
|
|
// handling.
|
|
};
|
|
|
|
/// \name Countable Loop Idiom Handling
|
|
/// @{
|
|
|
|
bool runOnCountableLoop();
|
|
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
|
|
SmallVectorImpl<BasicBlock *> &ExitBlocks);
|
|
|
|
void collectStores(BasicBlock *BB);
|
|
LegalStoreKind isLegalStore(StoreInst *SI);
|
|
enum class ForMemset { No, Yes };
|
|
bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
|
|
ForMemset For);
|
|
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
|
|
|
|
bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
|
|
unsigned StoreAlignment, Value *StoredVal,
|
|
Instruction *TheStore,
|
|
SmallPtrSetImpl<Instruction *> &Stores,
|
|
const SCEVAddRecExpr *Ev, const SCEV *BECount,
|
|
bool NegStride, bool IsLoopMemset = false);
|
|
bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
|
|
bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
|
|
bool IsLoopMemset = false);
|
|
|
|
/// @}
|
|
/// \name Noncountable Loop Idiom Handling
|
|
/// @{
|
|
|
|
bool runOnNoncountableLoop();
|
|
|
|
struct CmpLoopStructure {
|
|
Value *BCmpValue, *LatchCmpValue;
|
|
BasicBlock *HeaderBrEqualBB, *HeaderBrUnequalBB;
|
|
BasicBlock *LatchBrFinishBB, *LatchBrContinueBB;
|
|
};
|
|
bool matchBCmpLoopStructure(CmpLoopStructure &CmpLoop) const;
|
|
struct CmpOfLoads {
|
|
ICmpInst::Predicate BCmpPred;
|
|
Value *LoadSrcA, *LoadSrcB;
|
|
Value *LoadA, *LoadB;
|
|
};
|
|
bool matchBCmpOfLoads(Value *BCmpValue, CmpOfLoads &CmpOfLoads) const;
|
|
bool recognizeBCmpLoopControlFlow(const CmpOfLoads &CmpOfLoads,
|
|
CmpLoopStructure &CmpLoop) const;
|
|
bool recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, CmpOfLoads &CmpOfLoads,
|
|
const SCEV *&SrcA, const SCEV *&SrcB,
|
|
const SCEV *&Iterations) const;
|
|
bool detectBCmpIdiom(ICmpInst *&BCmpInst, CmpInst *&LatchCmpInst,
|
|
LoadInst *&LoadA, LoadInst *&LoadB, const SCEV *&SrcA,
|
|
const SCEV *&SrcB, const SCEV *&NBytes) const;
|
|
BasicBlock *transformBCmpControlFlow(ICmpInst *ComparedEqual);
|
|
void transformLoopToBCmp(ICmpInst *BCmpInst, CmpInst *LatchCmpInst,
|
|
LoadInst *LoadA, LoadInst *LoadB, const SCEV *SrcA,
|
|
const SCEV *SrcB, const SCEV *NBytes);
|
|
bool recognizeBCmp();
|
|
|
|
bool recognizePopcount();
|
|
void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
|
|
PHINode *CntPhi, Value *Var);
|
|
bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
|
|
void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
|
|
Instruction *CntInst, PHINode *CntPhi,
|
|
Value *Var, Instruction *DefX,
|
|
const DebugLoc &DL, bool ZeroCheck,
|
|
bool IsCntPhiUsedOutsideLoop);
|
|
|
|
/// @}
|
|
};
|
|
|
|
class LoopIdiomRecognizeLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
|
|
initializeLoopIdiomRecognizeLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
TargetLibraryInfo *TLI =
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
|
|
*L->getHeader()->getParent());
|
|
const TargetTransformInfo *TTI =
|
|
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
|
|
*L->getHeader()->getParent());
|
|
const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
|
|
LegacyPMAbstraction LoopDeleter(LPM);
|
|
|
|
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
|
|
|
|
LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, LoopDeleter, ORE);
|
|
return LIR.runOnLoop(L);
|
|
}
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LoopIdiomRecognizeLegacyPass::ID = 0;
|
|
|
|
PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &Updater) {
|
|
const auto *DL = &L.getHeader()->getModule()->getDataLayout();
|
|
|
|
const auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
|
|
Function *F = L.getHeader()->getParent();
|
|
|
|
auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
// FIXME: This should probably be optional rather than required.
|
|
if (!ORE)
|
|
report_fatal_error(
|
|
"LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
|
|
"at a higher level");
|
|
|
|
NewPMAbstraction LoopDeleter(Updater);
|
|
LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
|
|
LoopDeleter, *ORE);
|
|
if (!LIR.runOnLoop(&L))
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
|
|
"Recognize loop idioms", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
|
|
"Recognize loop idioms", false, false)
|
|
|
|
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
|
|
|
|
static void deleteDeadInstruction(Instruction *I) {
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of LoopIdiomRecognize
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LoopIdiomRecognize::runOnLoop(Loop *L) {
|
|
CurLoop = L;
|
|
// If the loop could not be converted to canonical form, it must have an
|
|
// indirectbr in it, just give up.
|
|
if (!L->getLoopPreheader())
|
|
return false;
|
|
|
|
// Disable loop idiom recognition if the function's name is a common idiom.
|
|
StringRef Name = L->getHeader()->getParent()->getName();
|
|
if (Name == "memset" || Name == "memcpy" || Name == "memcmp" ||
|
|
Name == "bcmp")
|
|
return false;
|
|
|
|
// Determine if code size heuristics need to be applied.
|
|
ApplyCodeSizeHeuristics =
|
|
L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
|
|
|
|
HasMemset = TLI->has(LibFunc_memset);
|
|
HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
|
|
HasMemcpy = TLI->has(LibFunc_memcpy);
|
|
HasMemCmp = TLI->has(LibFunc_memcmp);
|
|
HasBCmp = TLI->has(LibFunc_bcmp);
|
|
|
|
if (HasMemset || HasMemsetPattern || HasMemcpy || HasMemCmp || HasBCmp)
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L))
|
|
return runOnCountableLoop();
|
|
|
|
return runOnNoncountableLoop();
|
|
}
|
|
|
|
bool LoopIdiomRecognize::runOnCountableLoop() {
|
|
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
|
|
assert(!isa<SCEVCouldNotCompute>(BECount) &&
|
|
"runOnCountableLoop() called on a loop without a predictable"
|
|
"backedge-taken count");
|
|
|
|
// If this loop executes exactly one time, then it should be peeled, not
|
|
// optimized by this pass.
|
|
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
|
if (BECst->getAPInt() == 0)
|
|
return false;
|
|
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
|
|
<< CurLoop->getHeader()->getParent()->getName()
|
|
<< "] Countable Loop %" << CurLoop->getHeader()->getName()
|
|
<< "\n");
|
|
|
|
bool MadeChange = false;
|
|
|
|
// The following transforms hoist stores/memsets into the loop pre-header.
|
|
// Give up if the loop has instructions may throw.
|
|
SimpleLoopSafetyInfo SafetyInfo;
|
|
SafetyInfo.computeLoopSafetyInfo(CurLoop);
|
|
if (SafetyInfo.anyBlockMayThrow())
|
|
return MadeChange;
|
|
|
|
// Scan all the blocks in the loop that are not in subloops.
|
|
for (auto *BB : CurLoop->getBlocks()) {
|
|
// Ignore blocks in subloops.
|
|
if (LI->getLoopFor(BB) != CurLoop)
|
|
continue;
|
|
|
|
MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
|
|
const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
|
|
return ConstStride->getAPInt();
|
|
}
|
|
|
|
/// getMemSetPatternValue - If a strided store of the specified value is safe to
|
|
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
|
|
/// be passed in. Otherwise, return null.
|
|
///
|
|
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
|
|
/// just replicate their input array and then pass on to memset_pattern16.
|
|
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
|
|
// FIXME: This could check for UndefValue because it can be merged into any
|
|
// other valid pattern.
|
|
|
|
// If the value isn't a constant, we can't promote it to being in a constant
|
|
// array. We could theoretically do a store to an alloca or something, but
|
|
// that doesn't seem worthwhile.
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
// Only handle simple values that are a power of two bytes in size.
|
|
uint64_t Size = DL->getTypeSizeInBits(V->getType());
|
|
if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
|
|
return nullptr;
|
|
|
|
// Don't care enough about darwin/ppc to implement this.
|
|
if (DL->isBigEndian())
|
|
return nullptr;
|
|
|
|
// Convert to size in bytes.
|
|
Size /= 8;
|
|
|
|
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
|
|
// if the top and bottom are the same (e.g. for vectors and large integers).
|
|
if (Size > 16)
|
|
return nullptr;
|
|
|
|
// If the constant is exactly 16 bytes, just use it.
|
|
if (Size == 16)
|
|
return C;
|
|
|
|
// Otherwise, we'll use an array of the constants.
|
|
unsigned ArraySize = 16 / Size;
|
|
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
|
|
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
|
|
}
|
|
|
|
LoopIdiomRecognize::LegalStoreKind
|
|
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
|
// Don't touch volatile stores.
|
|
if (SI->isVolatile())
|
|
return LegalStoreKind::None;
|
|
// We only want simple or unordered-atomic stores.
|
|
if (!SI->isUnordered())
|
|
return LegalStoreKind::None;
|
|
|
|
// Don't convert stores of non-integral pointer types to memsets (which stores
|
|
// integers).
|
|
if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
|
|
return LegalStoreKind::None;
|
|
|
|
// Avoid merging nontemporal stores.
|
|
if (SI->getMetadata(LLVMContext::MD_nontemporal))
|
|
return LegalStoreKind::None;
|
|
|
|
Value *StoredVal = SI->getValueOperand();
|
|
Value *StorePtr = SI->getPointerOperand();
|
|
|
|
// Reject stores that are so large that they overflow an unsigned.
|
|
uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
|
|
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
|
|
return LegalStoreKind::None;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided store. If we have something else, it's a
|
|
// random store we can't handle.
|
|
const SCEVAddRecExpr *StoreEv =
|
|
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
|
|
return LegalStoreKind::None;
|
|
|
|
// Check to see if we have a constant stride.
|
|
if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
|
|
return LegalStoreKind::None;
|
|
|
|
// See if the store can be turned into a memset.
|
|
|
|
// If the stored value is a byte-wise value (like i32 -1), then it may be
|
|
// turned into a memset of i8 -1, assuming that all the consecutive bytes
|
|
// are stored. A store of i32 0x01020304 can never be turned into a memset,
|
|
// but it can be turned into memset_pattern if the target supports it.
|
|
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
|
|
Constant *PatternValue = nullptr;
|
|
|
|
// Note: memset and memset_pattern on unordered-atomic is yet not supported
|
|
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
|
|
|
|
// If we're allowed to form a memset, and the stored value would be
|
|
// acceptable for memset, use it.
|
|
if (!UnorderedAtomic && HasMemset && SplatValue &&
|
|
// Verify that the stored value is loop invariant. If not, we can't
|
|
// promote the memset.
|
|
CurLoop->isLoopInvariant(SplatValue)) {
|
|
// It looks like we can use SplatValue.
|
|
return LegalStoreKind::Memset;
|
|
} else if (!UnorderedAtomic && HasMemsetPattern &&
|
|
// Don't create memset_pattern16s with address spaces.
|
|
StorePtr->getType()->getPointerAddressSpace() == 0 &&
|
|
(PatternValue = getMemSetPatternValue(StoredVal, DL))) {
|
|
// It looks like we can use PatternValue!
|
|
return LegalStoreKind::MemsetPattern;
|
|
}
|
|
|
|
// Otherwise, see if the store can be turned into a memcpy.
|
|
if (HasMemcpy) {
|
|
// Check to see if the stride matches the size of the store. If so, then we
|
|
// know that every byte is touched in the loop.
|
|
APInt Stride = getStoreStride(StoreEv);
|
|
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
|
if (StoreSize != Stride && StoreSize != -Stride)
|
|
return LegalStoreKind::None;
|
|
|
|
// The store must be feeding a non-volatile load.
|
|
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
|
|
|
|
// Only allow non-volatile loads
|
|
if (!LI || LI->isVolatile())
|
|
return LegalStoreKind::None;
|
|
// Only allow simple or unordered-atomic loads
|
|
if (!LI->isUnordered())
|
|
return LegalStoreKind::None;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided load. If we have something else, it's a
|
|
// random load we can't handle.
|
|
const SCEVAddRecExpr *LoadEv =
|
|
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
|
|
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
|
|
return LegalStoreKind::None;
|
|
|
|
// The store and load must share the same stride.
|
|
if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
|
|
return LegalStoreKind::None;
|
|
|
|
// Success. This store can be converted into a memcpy.
|
|
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
|
|
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
|
|
: LegalStoreKind::Memcpy;
|
|
}
|
|
// This store can't be transformed into a memset/memcpy.
|
|
return LegalStoreKind::None;
|
|
}
|
|
|
|
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
|
|
StoreRefsForMemset.clear();
|
|
StoreRefsForMemsetPattern.clear();
|
|
StoreRefsForMemcpy.clear();
|
|
for (Instruction &I : *BB) {
|
|
StoreInst *SI = dyn_cast<StoreInst>(&I);
|
|
if (!SI)
|
|
continue;
|
|
|
|
// Make sure this is a strided store with a constant stride.
|
|
switch (isLegalStore(SI)) {
|
|
case LegalStoreKind::None:
|
|
// Nothing to do
|
|
break;
|
|
case LegalStoreKind::Memset: {
|
|
// Find the base pointer.
|
|
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
|
|
StoreRefsForMemset[Ptr].push_back(SI);
|
|
} break;
|
|
case LegalStoreKind::MemsetPattern: {
|
|
// Find the base pointer.
|
|
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
|
|
StoreRefsForMemsetPattern[Ptr].push_back(SI);
|
|
} break;
|
|
case LegalStoreKind::Memcpy:
|
|
case LegalStoreKind::UnorderedAtomicMemcpy:
|
|
StoreRefsForMemcpy.push_back(SI);
|
|
break;
|
|
default:
|
|
assert(false && "unhandled return value");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
|
|
/// with the specified backedge count. This block is known to be in the current
|
|
/// loop and not in any subloops.
|
|
bool LoopIdiomRecognize::runOnLoopBlock(
|
|
BasicBlock *BB, const SCEV *BECount,
|
|
SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
|
// We can only promote stores in this block if they are unconditionally
|
|
// executed in the loop. For a block to be unconditionally executed, it has
|
|
// to dominate all the exit blocks of the loop. Verify this now.
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (!DT->dominates(BB, ExitBlocks[i]))
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
// Look for store instructions, which may be optimized to memset/memcpy.
|
|
collectStores(BB);
|
|
|
|
// Look for a single store or sets of stores with a common base, which can be
|
|
// optimized into a memset (memset_pattern). The latter most commonly happens
|
|
// with structs and handunrolled loops.
|
|
for (auto &SL : StoreRefsForMemset)
|
|
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
|
|
|
|
for (auto &SL : StoreRefsForMemsetPattern)
|
|
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
|
|
|
|
// Optimize the store into a memcpy, if it feeds an similarly strided load.
|
|
for (auto &SI : StoreRefsForMemcpy)
|
|
MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
|
Instruction *Inst = &*I++;
|
|
// Look for memset instructions, which may be optimized to a larger memset.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
|
|
WeakTrackingVH InstPtr(&*I);
|
|
if (!processLoopMemSet(MSI, BECount))
|
|
continue;
|
|
MadeChange = true;
|
|
|
|
// If processing the memset invalidated our iterator, start over from the
|
|
// top of the block.
|
|
if (!InstPtr)
|
|
I = BB->begin();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// See if this store(s) can be promoted to a memset.
|
|
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
|
|
const SCEV *BECount, ForMemset For) {
|
|
// Try to find consecutive stores that can be transformed into memsets.
|
|
SetVector<StoreInst *> Heads, Tails;
|
|
SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
|
|
|
|
// Do a quadratic search on all of the given stores and find
|
|
// all of the pairs of stores that follow each other.
|
|
SmallVector<unsigned, 16> IndexQueue;
|
|
for (unsigned i = 0, e = SL.size(); i < e; ++i) {
|
|
assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
|
|
|
|
Value *FirstStoredVal = SL[i]->getValueOperand();
|
|
Value *FirstStorePtr = SL[i]->getPointerOperand();
|
|
const SCEVAddRecExpr *FirstStoreEv =
|
|
cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
|
|
APInt FirstStride = getStoreStride(FirstStoreEv);
|
|
unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
|
|
|
|
// See if we can optimize just this store in isolation.
|
|
if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
|
|
Heads.insert(SL[i]);
|
|
continue;
|
|
}
|
|
|
|
Value *FirstSplatValue = nullptr;
|
|
Constant *FirstPatternValue = nullptr;
|
|
|
|
if (For == ForMemset::Yes)
|
|
FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
|
|
else
|
|
FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
|
|
|
|
assert((FirstSplatValue || FirstPatternValue) &&
|
|
"Expected either splat value or pattern value.");
|
|
|
|
IndexQueue.clear();
|
|
// If a store has multiple consecutive store candidates, search Stores
|
|
// array according to the sequence: from i+1 to e, then from i-1 to 0.
|
|
// This is because usually pairing with immediate succeeding or preceding
|
|
// candidate create the best chance to find memset opportunity.
|
|
unsigned j = 0;
|
|
for (j = i + 1; j < e; ++j)
|
|
IndexQueue.push_back(j);
|
|
for (j = i; j > 0; --j)
|
|
IndexQueue.push_back(j - 1);
|
|
|
|
for (auto &k : IndexQueue) {
|
|
assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
|
|
Value *SecondStorePtr = SL[k]->getPointerOperand();
|
|
const SCEVAddRecExpr *SecondStoreEv =
|
|
cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
|
|
APInt SecondStride = getStoreStride(SecondStoreEv);
|
|
|
|
if (FirstStride != SecondStride)
|
|
continue;
|
|
|
|
Value *SecondStoredVal = SL[k]->getValueOperand();
|
|
Value *SecondSplatValue = nullptr;
|
|
Constant *SecondPatternValue = nullptr;
|
|
|
|
if (For == ForMemset::Yes)
|
|
SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
|
|
else
|
|
SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
|
|
|
|
assert((SecondSplatValue || SecondPatternValue) &&
|
|
"Expected either splat value or pattern value.");
|
|
|
|
if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
|
|
if (For == ForMemset::Yes) {
|
|
if (isa<UndefValue>(FirstSplatValue))
|
|
FirstSplatValue = SecondSplatValue;
|
|
if (FirstSplatValue != SecondSplatValue)
|
|
continue;
|
|
} else {
|
|
if (isa<UndefValue>(FirstPatternValue))
|
|
FirstPatternValue = SecondPatternValue;
|
|
if (FirstPatternValue != SecondPatternValue)
|
|
continue;
|
|
}
|
|
Tails.insert(SL[k]);
|
|
Heads.insert(SL[i]);
|
|
ConsecutiveChain[SL[i]] = SL[k];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We may run into multiple chains that merge into a single chain. We mark the
|
|
// stores that we transformed so that we don't visit the same store twice.
|
|
SmallPtrSet<Value *, 16> TransformedStores;
|
|
bool Changed = false;
|
|
|
|
// For stores that start but don't end a link in the chain:
|
|
for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
|
|
it != e; ++it) {
|
|
if (Tails.count(*it))
|
|
continue;
|
|
|
|
// We found a store instr that starts a chain. Now follow the chain and try
|
|
// to transform it.
|
|
SmallPtrSet<Instruction *, 8> AdjacentStores;
|
|
StoreInst *I = *it;
|
|
|
|
StoreInst *HeadStore = I;
|
|
unsigned StoreSize = 0;
|
|
|
|
// Collect the chain into a list.
|
|
while (Tails.count(I) || Heads.count(I)) {
|
|
if (TransformedStores.count(I))
|
|
break;
|
|
AdjacentStores.insert(I);
|
|
|
|
StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
|
|
// Move to the next value in the chain.
|
|
I = ConsecutiveChain[I];
|
|
}
|
|
|
|
Value *StoredVal = HeadStore->getValueOperand();
|
|
Value *StorePtr = HeadStore->getPointerOperand();
|
|
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
APInt Stride = getStoreStride(StoreEv);
|
|
|
|
// Check to see if the stride matches the size of the stores. If so, then
|
|
// we know that every byte is touched in the loop.
|
|
if (StoreSize != Stride && StoreSize != -Stride)
|
|
continue;
|
|
|
|
bool NegStride = StoreSize == -Stride;
|
|
|
|
if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
|
|
StoredVal, HeadStore, AdjacentStores, StoreEv,
|
|
BECount, NegStride)) {
|
|
TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// processLoopMemSet - See if this memset can be promoted to a large memset.
|
|
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
|
|
const SCEV *BECount) {
|
|
// We can only handle non-volatile memsets with a constant size.
|
|
if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
|
|
return false;
|
|
|
|
// If we're not allowed to hack on memset, we fail.
|
|
if (!HasMemset)
|
|
return false;
|
|
|
|
Value *Pointer = MSI->getDest();
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided store. If we have something else, it's a
|
|
// random store we can't handle.
|
|
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
|
|
if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
|
|
return false;
|
|
|
|
// Reject memsets that are so large that they overflow an unsigned.
|
|
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
if ((SizeInBytes >> 32) != 0)
|
|
return false;
|
|
|
|
// Check to see if the stride matches the size of the memset. If so, then we
|
|
// know that every byte is touched in the loop.
|
|
const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
|
|
if (!ConstStride)
|
|
return false;
|
|
|
|
APInt Stride = ConstStride->getAPInt();
|
|
if (SizeInBytes != Stride && SizeInBytes != -Stride)
|
|
return false;
|
|
|
|
// Verify that the memset value is loop invariant. If not, we can't promote
|
|
// the memset.
|
|
Value *SplatValue = MSI->getValue();
|
|
if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
|
|
return false;
|
|
|
|
SmallPtrSet<Instruction *, 1> MSIs;
|
|
MSIs.insert(MSI);
|
|
bool NegStride = SizeInBytes == -Stride;
|
|
return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
|
|
MSI->getDestAlignment(), SplatValue, MSI, MSIs,
|
|
Ev, BECount, NegStride, /*IsLoopMemset=*/true);
|
|
}
|
|
|
|
/// mayLoopAccessLocation - Return true if the specified loop might access the
|
|
/// specified pointer location, which is a loop-strided access. The 'Access'
|
|
/// argument specifies what the verboten forms of access are (read or write).
|
|
static bool
|
|
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
|
|
const SCEV *BECount, unsigned StoreSize,
|
|
AliasAnalysis &AA,
|
|
SmallPtrSetImpl<Instruction *> &IgnoredStores) {
|
|
// Get the location that may be stored across the loop. Since the access is
|
|
// strided positively through memory, we say that the modified location starts
|
|
// at the pointer and has infinite size.
|
|
LocationSize AccessSize = LocationSize::unknown();
|
|
|
|
// If the loop iterates a fixed number of times, we can refine the access size
|
|
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
|
|
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
|
AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
|
|
StoreSize);
|
|
|
|
// TODO: For this to be really effective, we have to dive into the pointer
|
|
// operand in the store. Store to &A[i] of 100 will always return may alias
|
|
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
|
|
// which will then no-alias a store to &A[100].
|
|
MemoryLocation StoreLoc(Ptr, AccessSize);
|
|
|
|
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
|
|
++BI)
|
|
for (Instruction &I : **BI)
|
|
if (IgnoredStores.count(&I) == 0 &&
|
|
isModOrRefSet(
|
|
intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// If we have a negative stride, Start refers to the end of the memory location
|
|
// we're trying to memset. Therefore, we need to recompute the base pointer,
|
|
// which is just Start - BECount*Size.
|
|
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
|
|
Type *IntPtr, unsigned StoreSize,
|
|
ScalarEvolution *SE) {
|
|
const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
|
|
if (StoreSize != 1)
|
|
Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
|
|
SCEV::FlagNUW);
|
|
return SE->getMinusSCEV(Start, Index);
|
|
}
|
|
|
|
/// Compute the number of bytes as a SCEV from the backedge taken count.
|
|
///
|
|
/// This also maps the SCEV into the provided type and tries to handle the
|
|
/// computation in a way that will fold cleanly.
|
|
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
|
|
unsigned StoreSize, Loop *CurLoop,
|
|
const DataLayout *DL, ScalarEvolution *SE) {
|
|
const SCEV *NumBytesS;
|
|
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
|
|
// pointer size if it isn't already.
|
|
//
|
|
// If we're going to need to zero extend the BE count, check if we can add
|
|
// one to it prior to zero extending without overflow. Provided this is safe,
|
|
// it allows better simplification of the +1.
|
|
if (DL->getTypeSizeInBits(BECount->getType()) <
|
|
DL->getTypeSizeInBits(IntPtr) &&
|
|
SE->isLoopEntryGuardedByCond(
|
|
CurLoop, ICmpInst::ICMP_NE, BECount,
|
|
SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
|
|
NumBytesS = SE->getZeroExtendExpr(
|
|
SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
|
|
IntPtr);
|
|
} else {
|
|
NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
|
|
SE->getOne(IntPtr), SCEV::FlagNUW);
|
|
}
|
|
|
|
// And scale it based on the store size.
|
|
if (StoreSize != 1) {
|
|
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
|
|
SCEV::FlagNUW);
|
|
}
|
|
return NumBytesS;
|
|
}
|
|
|
|
/// processLoopStridedStore - We see a strided store of some value. If we can
|
|
/// transform this into a memset or memset_pattern in the loop preheader, do so.
|
|
bool LoopIdiomRecognize::processLoopStridedStore(
|
|
Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
|
|
Value *StoredVal, Instruction *TheStore,
|
|
SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
|
|
const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
|
|
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
|
|
Constant *PatternValue = nullptr;
|
|
|
|
if (!SplatValue)
|
|
PatternValue = getMemSetPatternValue(StoredVal, DL);
|
|
|
|
assert((SplatValue || PatternValue) &&
|
|
"Expected either splat value or pattern value.");
|
|
|
|
// The trip count of the loop and the base pointer of the addrec SCEV is
|
|
// guaranteed to be loop invariant, which means that it should dominate the
|
|
// header. This allows us to insert code for it in the preheader.
|
|
unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
IRBuilder<> Builder(Preheader->getTerminator());
|
|
SCEVExpander Expander(*SE, *DL, "loop-idiom");
|
|
|
|
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
|
|
Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
|
|
|
|
const SCEV *Start = Ev->getStart();
|
|
// Handle negative strided loops.
|
|
if (NegStride)
|
|
Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
|
|
|
|
// TODO: ideally we should still be able to generate memset if SCEV expander
|
|
// is taught to generate the dependencies at the latest point.
|
|
if (!isSafeToExpand(Start, *SE))
|
|
return false;
|
|
|
|
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
|
|
// this into a memset in the loop preheader now if we want. However, this
|
|
// would be unsafe to do if there is anything else in the loop that may read
|
|
// or write to the aliased location. Check for any overlap by generating the
|
|
// base pointer and checking the region.
|
|
Value *BasePtr =
|
|
Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
|
|
if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
|
|
StoreSize, *AA, Stores)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
|
|
return false;
|
|
}
|
|
|
|
if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
|
|
return false;
|
|
|
|
// Okay, everything looks good, insert the memset.
|
|
|
|
const SCEV *NumBytesS =
|
|
getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
|
|
|
|
// TODO: ideally we should still be able to generate memset if SCEV expander
|
|
// is taught to generate the dependencies at the latest point.
|
|
if (!isSafeToExpand(NumBytesS, *SE))
|
|
return false;
|
|
|
|
Value *NumBytes =
|
|
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
|
|
|
|
CallInst *NewCall;
|
|
if (SplatValue) {
|
|
NewCall =
|
|
Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
|
|
} else {
|
|
// Everything is emitted in default address space
|
|
Type *Int8PtrTy = DestInt8PtrTy;
|
|
|
|
Module *M = TheStore->getModule();
|
|
StringRef FuncName = "memset_pattern16";
|
|
FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
|
|
Int8PtrTy, Int8PtrTy, IntPtr);
|
|
inferLibFuncAttributes(M, FuncName, *TLI);
|
|
|
|
// Otherwise we should form a memset_pattern16. PatternValue is known to be
|
|
// an constant array of 16-bytes. Plop the value into a mergable global.
|
|
GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
|
|
GlobalValue::PrivateLinkage,
|
|
PatternValue, ".memset_pattern");
|
|
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
|
|
GV->setAlignment(16);
|
|
Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
|
|
NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
|
|
<< " from store to: " << *Ev << " at: " << *TheStore
|
|
<< "\n");
|
|
NewCall->setDebugLoc(TheStore->getDebugLoc());
|
|
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
|
|
NewCall->getDebugLoc(), Preheader)
|
|
<< "Transformed loop-strided store into a call to "
|
|
<< ore::NV("NewFunction", NewCall->getCalledFunction())
|
|
<< "() function";
|
|
});
|
|
|
|
// Okay, the memset has been formed. Zap the original store and anything that
|
|
// feeds into it.
|
|
for (auto *I : Stores)
|
|
deleteDeadInstruction(I);
|
|
++NumMemSet;
|
|
return true;
|
|
}
|
|
|
|
/// If the stored value is a strided load in the same loop with the same stride
|
|
/// this may be transformable into a memcpy. This kicks in for stuff like
|
|
/// for (i) A[i] = B[i];
|
|
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
|
|
const SCEV *BECount) {
|
|
assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
|
|
|
|
Value *StorePtr = SI->getPointerOperand();
|
|
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
APInt Stride = getStoreStride(StoreEv);
|
|
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
|
bool NegStride = StoreSize == -Stride;
|
|
|
|
// The store must be feeding a non-volatile load.
|
|
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
|
|
assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided load. If we have something else, it's a
|
|
// random load we can't handle.
|
|
const SCEVAddRecExpr *LoadEv =
|
|
cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
|
|
|
|
// The trip count of the loop and the base pointer of the addrec SCEV is
|
|
// guaranteed to be loop invariant, which means that it should dominate the
|
|
// header. This allows us to insert code for it in the preheader.
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
IRBuilder<> Builder(Preheader->getTerminator());
|
|
SCEVExpander Expander(*SE, *DL, "loop-idiom");
|
|
|
|
const SCEV *StrStart = StoreEv->getStart();
|
|
unsigned StrAS = SI->getPointerAddressSpace();
|
|
Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
|
|
|
|
// Handle negative strided loops.
|
|
if (NegStride)
|
|
StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
|
|
|
|
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
|
|
// this into a memcpy in the loop preheader now if we want. However, this
|
|
// would be unsafe to do if there is anything else in the loop that may read
|
|
// or write the memory region we're storing to. This includes the load that
|
|
// feeds the stores. Check for an alias by generating the base address and
|
|
// checking everything.
|
|
Value *StoreBasePtr = Expander.expandCodeFor(
|
|
StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
|
|
|
|
SmallPtrSet<Instruction *, 1> Stores;
|
|
Stores.insert(SI);
|
|
if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
|
|
StoreSize, *AA, Stores)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
|
|
return false;
|
|
}
|
|
|
|
const SCEV *LdStart = LoadEv->getStart();
|
|
unsigned LdAS = LI->getPointerAddressSpace();
|
|
|
|
// Handle negative strided loops.
|
|
if (NegStride)
|
|
LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
|
|
|
|
// For a memcpy, we have to make sure that the input array is not being
|
|
// mutated by the loop.
|
|
Value *LoadBasePtr = Expander.expandCodeFor(
|
|
LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
|
|
|
|
if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
|
|
StoreSize, *AA, Stores)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
|
|
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
|
|
return false;
|
|
}
|
|
|
|
if (avoidLIRForMultiBlockLoop())
|
|
return false;
|
|
|
|
// Okay, everything is safe, we can transform this!
|
|
|
|
const SCEV *NumBytesS =
|
|
getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
|
|
|
|
Value *NumBytes =
|
|
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
|
|
|
|
CallInst *NewCall = nullptr;
|
|
// Check whether to generate an unordered atomic memcpy:
|
|
// If the load or store are atomic, then they must necessarily be unordered
|
|
// by previous checks.
|
|
if (!SI->isAtomic() && !LI->isAtomic())
|
|
NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
|
|
LoadBasePtr, LI->getAlignment(), NumBytes);
|
|
else {
|
|
// We cannot allow unaligned ops for unordered load/store, so reject
|
|
// anything where the alignment isn't at least the element size.
|
|
unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
|
|
if (Align < StoreSize)
|
|
return false;
|
|
|
|
// If the element.atomic memcpy is not lowered into explicit
|
|
// loads/stores later, then it will be lowered into an element-size
|
|
// specific lib call. If the lib call doesn't exist for our store size, then
|
|
// we shouldn't generate the memcpy.
|
|
if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
|
|
return false;
|
|
|
|
// Create the call.
|
|
// Note that unordered atomic loads/stores are *required* by the spec to
|
|
// have an alignment but non-atomic loads/stores may not.
|
|
NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
|
|
StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
|
|
NumBytes, StoreSize);
|
|
}
|
|
NewCall->setDebugLoc(SI->getDebugLoc());
|
|
|
|
LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
|
|
<< " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
|
|
<< " from store ptr=" << *StoreEv << " at: " << *SI
|
|
<< "\n");
|
|
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
|
|
NewCall->getDebugLoc(), Preheader)
|
|
<< "Formed a call to "
|
|
<< ore::NV("NewFunction", NewCall->getCalledFunction())
|
|
<< "() function";
|
|
});
|
|
|
|
// Okay, the memcpy has been formed. Zap the original store and anything that
|
|
// feeds into it.
|
|
deleteDeadInstruction(SI);
|
|
++NumMemCpy;
|
|
return true;
|
|
}
|
|
|
|
// When compiling for codesize we avoid idiom recognition for a multi-block loop
|
|
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
|
|
//
|
|
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
|
|
bool IsLoopMemset) {
|
|
if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
|
|
if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
|
|
LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
|
|
<< " : LIR " << (IsMemset ? "Memset" : "Memcpy")
|
|
<< " avoided: multi-block top-level loop\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::runOnNoncountableLoop() {
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
|
|
<< CurLoop->getHeader()->getParent()->getName()
|
|
<< "] Noncountable Loop %"
|
|
<< CurLoop->getHeader()->getName() << "\n");
|
|
|
|
return recognizeBCmp() || recognizePopcount() || recognizeAndInsertFFS();
|
|
}
|
|
|
|
/// Check if the given conditional branch is based on the comparison between
|
|
/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
|
|
/// true), the control yields to the loop entry. If the branch matches the
|
|
/// behavior, the variable involved in the comparison is returned. This function
|
|
/// will be called to see if the precondition and postcondition of the loop are
|
|
/// in desirable form.
|
|
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
|
|
bool JmpOnZero = false) {
|
|
if (!BI || !BI->isConditional())
|
|
return nullptr;
|
|
|
|
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
|
|
if (!Cond)
|
|
return nullptr;
|
|
|
|
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
|
|
if (!CmpZero || !CmpZero->isZero())
|
|
return nullptr;
|
|
|
|
BasicBlock *TrueSucc = BI->getSuccessor(0);
|
|
BasicBlock *FalseSucc = BI->getSuccessor(1);
|
|
if (JmpOnZero)
|
|
std::swap(TrueSucc, FalseSucc);
|
|
|
|
ICmpInst::Predicate Pred = Cond->getPredicate();
|
|
if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
|
|
(Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
|
|
return Cond->getOperand(0);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Check if the recurrence variable `VarX` is in the right form to create
|
|
// the idiom. Returns the value coerced to a PHINode if so.
|
|
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
|
|
BasicBlock *LoopEntry) {
|
|
auto *PhiX = dyn_cast<PHINode>(VarX);
|
|
if (PhiX && PhiX->getParent() == LoopEntry &&
|
|
(PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
|
|
return PhiX;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true iff the idiom is detected in the loop.
|
|
///
|
|
/// Additionally:
|
|
/// 1) \p CntInst is set to the instruction counting the population bit.
|
|
/// 2) \p CntPhi is set to the corresponding phi node.
|
|
/// 3) \p Var is set to the value whose population bits are being counted.
|
|
///
|
|
/// The core idiom we are trying to detect is:
|
|
/// \code
|
|
/// if (x0 != 0)
|
|
/// goto loop-exit // the precondition of the loop
|
|
/// cnt0 = init-val;
|
|
/// do {
|
|
/// x1 = phi (x0, x2);
|
|
/// cnt1 = phi(cnt0, cnt2);
|
|
///
|
|
/// cnt2 = cnt1 + 1;
|
|
/// ...
|
|
/// x2 = x1 & (x1 - 1);
|
|
/// ...
|
|
/// } while(x != 0);
|
|
///
|
|
/// loop-exit:
|
|
/// \endcode
|
|
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
|
|
Instruction *&CntInst, PHINode *&CntPhi,
|
|
Value *&Var) {
|
|
// step 1: Check to see if the look-back branch match this pattern:
|
|
// "if (a!=0) goto loop-entry".
|
|
BasicBlock *LoopEntry;
|
|
Instruction *DefX2, *CountInst;
|
|
Value *VarX1, *VarX0;
|
|
PHINode *PhiX, *CountPhi;
|
|
|
|
DefX2 = CountInst = nullptr;
|
|
VarX1 = VarX0 = nullptr;
|
|
PhiX = CountPhi = nullptr;
|
|
LoopEntry = *(CurLoop->block_begin());
|
|
|
|
// step 1: Check if the loop-back branch is in desirable form.
|
|
{
|
|
if (Value *T = matchCondition(
|
|
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
|
|
DefX2 = dyn_cast<Instruction>(T);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
|
|
{
|
|
if (!DefX2 || DefX2->getOpcode() != Instruction::And)
|
|
return false;
|
|
|
|
BinaryOperator *SubOneOp;
|
|
|
|
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
|
|
VarX1 = DefX2->getOperand(1);
|
|
else {
|
|
VarX1 = DefX2->getOperand(0);
|
|
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
|
|
}
|
|
if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
|
|
return false;
|
|
|
|
ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
|
|
if (!Dec ||
|
|
!((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
|
|
(SubOneOp->getOpcode() == Instruction::Add &&
|
|
Dec->isMinusOne()))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// step 3: Check the recurrence of variable X
|
|
PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
|
|
if (!PhiX)
|
|
return false;
|
|
|
|
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
|
|
{
|
|
CountInst = nullptr;
|
|
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
|
|
IterE = LoopEntry->end();
|
|
Iter != IterE; Iter++) {
|
|
Instruction *Inst = &*Iter;
|
|
if (Inst->getOpcode() != Instruction::Add)
|
|
continue;
|
|
|
|
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
|
|
if (!Inc || !Inc->isOne())
|
|
continue;
|
|
|
|
PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
|
|
if (!Phi)
|
|
continue;
|
|
|
|
// Check if the result of the instruction is live of the loop.
|
|
bool LiveOutLoop = false;
|
|
for (User *U : Inst->users()) {
|
|
if ((cast<Instruction>(U))->getParent() != LoopEntry) {
|
|
LiveOutLoop = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (LiveOutLoop) {
|
|
CountInst = Inst;
|
|
CountPhi = Phi;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!CountInst)
|
|
return false;
|
|
}
|
|
|
|
// step 5: check if the precondition is in this form:
|
|
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
|
|
{
|
|
auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
|
Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
|
|
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
|
|
return false;
|
|
|
|
CntInst = CountInst;
|
|
CntPhi = CountPhi;
|
|
Var = T;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the idiom is detected in the loop.
|
|
///
|
|
/// Additionally:
|
|
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
|
|
/// or nullptr if there is no such.
|
|
/// 2) \p CntPhi is set to the corresponding phi node
|
|
/// or nullptr if there is no such.
|
|
/// 3) \p Var is set to the value whose CTLZ could be used.
|
|
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
|
|
///
|
|
/// The core idiom we are trying to detect is:
|
|
/// \code
|
|
/// if (x0 == 0)
|
|
/// goto loop-exit // the precondition of the loop
|
|
/// cnt0 = init-val;
|
|
/// do {
|
|
/// x = phi (x0, x.next); //PhiX
|
|
/// cnt = phi(cnt0, cnt.next);
|
|
///
|
|
/// cnt.next = cnt + 1;
|
|
/// ...
|
|
/// x.next = x >> 1; // DefX
|
|
/// ...
|
|
/// } while(x.next != 0);
|
|
///
|
|
/// loop-exit:
|
|
/// \endcode
|
|
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
|
|
Intrinsic::ID &IntrinID, Value *&InitX,
|
|
Instruction *&CntInst, PHINode *&CntPhi,
|
|
Instruction *&DefX) {
|
|
BasicBlock *LoopEntry;
|
|
Value *VarX = nullptr;
|
|
|
|
DefX = nullptr;
|
|
CntInst = nullptr;
|
|
CntPhi = nullptr;
|
|
LoopEntry = *(CurLoop->block_begin());
|
|
|
|
// step 1: Check if the loop-back branch is in desirable form.
|
|
if (Value *T = matchCondition(
|
|
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
|
|
DefX = dyn_cast<Instruction>(T);
|
|
else
|
|
return false;
|
|
|
|
// step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
|
|
if (!DefX || !DefX->isShift())
|
|
return false;
|
|
IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
|
|
Intrinsic::ctlz;
|
|
ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
|
|
if (!Shft || !Shft->isOne())
|
|
return false;
|
|
VarX = DefX->getOperand(0);
|
|
|
|
// step 3: Check the recurrence of variable X
|
|
PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
|
|
if (!PhiX)
|
|
return false;
|
|
|
|
InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
|
|
|
// Make sure the initial value can't be negative otherwise the ashr in the
|
|
// loop might never reach zero which would make the loop infinite.
|
|
if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
|
|
return false;
|
|
|
|
// step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
|
|
// TODO: We can skip the step. If loop trip count is known (CTLZ),
|
|
// then all uses of "cnt.next" could be optimized to the trip count
|
|
// plus "cnt0". Currently it is not optimized.
|
|
// This step could be used to detect POPCNT instruction:
|
|
// cnt.next = cnt + (x.next & 1)
|
|
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
|
|
IterE = LoopEntry->end();
|
|
Iter != IterE; Iter++) {
|
|
Instruction *Inst = &*Iter;
|
|
if (Inst->getOpcode() != Instruction::Add)
|
|
continue;
|
|
|
|
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
|
|
if (!Inc || !Inc->isOne())
|
|
continue;
|
|
|
|
PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
|
|
if (!Phi)
|
|
continue;
|
|
|
|
CntInst = Inst;
|
|
CntPhi = Phi;
|
|
break;
|
|
}
|
|
if (!CntInst)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
|
|
/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
|
|
/// trip count returns true; otherwise, returns false.
|
|
bool LoopIdiomRecognize::recognizeAndInsertFFS() {
|
|
// Give up if the loop has multiple blocks or multiple backedges.
|
|
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
|
return false;
|
|
|
|
Intrinsic::ID IntrinID;
|
|
Value *InitX;
|
|
Instruction *DefX = nullptr;
|
|
PHINode *CntPhi = nullptr;
|
|
Instruction *CntInst = nullptr;
|
|
// Help decide if transformation is profitable. For ShiftUntilZero idiom,
|
|
// this is always 6.
|
|
size_t IdiomCanonicalSize = 6;
|
|
|
|
if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
|
|
CntInst, CntPhi, DefX))
|
|
return false;
|
|
|
|
bool IsCntPhiUsedOutsideLoop = false;
|
|
for (User *U : CntPhi->users())
|
|
if (!CurLoop->contains(cast<Instruction>(U))) {
|
|
IsCntPhiUsedOutsideLoop = true;
|
|
break;
|
|
}
|
|
bool IsCntInstUsedOutsideLoop = false;
|
|
for (User *U : CntInst->users())
|
|
if (!CurLoop->contains(cast<Instruction>(U))) {
|
|
IsCntInstUsedOutsideLoop = true;
|
|
break;
|
|
}
|
|
// If both CntInst and CntPhi are used outside the loop the profitability
|
|
// is questionable.
|
|
if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
|
|
return false;
|
|
|
|
// For some CPUs result of CTLZ(X) intrinsic is undefined
|
|
// when X is 0. If we can not guarantee X != 0, we need to check this
|
|
// when expand.
|
|
bool ZeroCheck = false;
|
|
// It is safe to assume Preheader exist as it was checked in
|
|
// parent function RunOnLoop.
|
|
BasicBlock *PH = CurLoop->getLoopPreheader();
|
|
|
|
// If we are using the count instruction outside the loop, make sure we
|
|
// have a zero check as a precondition. Without the check the loop would run
|
|
// one iteration for before any check of the input value. This means 0 and 1
|
|
// would have identical behavior in the original loop and thus
|
|
if (!IsCntPhiUsedOutsideLoop) {
|
|
auto *PreCondBB = PH->getSinglePredecessor();
|
|
if (!PreCondBB)
|
|
return false;
|
|
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
|
if (!PreCondBI)
|
|
return false;
|
|
if (matchCondition(PreCondBI, PH) != InitX)
|
|
return false;
|
|
ZeroCheck = true;
|
|
}
|
|
|
|
// Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
|
|
// profitable if we delete the loop.
|
|
|
|
// the loop has only 6 instructions:
|
|
// %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
|
|
// %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
|
|
// %shr = ashr %n.addr.0, 1
|
|
// %tobool = icmp eq %shr, 0
|
|
// %inc = add nsw %i.0, 1
|
|
// br i1 %tobool
|
|
|
|
const Value *Args[] =
|
|
{InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
|
|
: ConstantInt::getFalse(InitX->getContext())};
|
|
|
|
// @llvm.dbg doesn't count as they have no semantic effect.
|
|
auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
|
|
uint32_t HeaderSize =
|
|
std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
|
|
|
|
if (HeaderSize != IdiomCanonicalSize &&
|
|
TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
|
|
TargetTransformInfo::TCC_Basic)
|
|
return false;
|
|
|
|
transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
|
|
DefX->getDebugLoc(), ZeroCheck,
|
|
IsCntPhiUsedOutsideLoop);
|
|
return true;
|
|
}
|
|
|
|
/// Recognizes a population count idiom in a non-countable loop.
|
|
///
|
|
/// If detected, transforms the relevant code to issue the popcount intrinsic
|
|
/// function call, and returns true; otherwise, returns false.
|
|
bool LoopIdiomRecognize::recognizePopcount() {
|
|
if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
|
|
return false;
|
|
|
|
// Counting population are usually conducted by few arithmetic instructions.
|
|
// Such instructions can be easily "absorbed" by vacant slots in a
|
|
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
|
|
// in a compact loop.
|
|
|
|
// Give up if the loop has multiple blocks or multiple backedges.
|
|
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
|
return false;
|
|
|
|
BasicBlock *LoopBody = *(CurLoop->block_begin());
|
|
if (LoopBody->size() >= 20) {
|
|
// The loop is too big, bail out.
|
|
return false;
|
|
}
|
|
|
|
// It should have a preheader containing nothing but an unconditional branch.
|
|
BasicBlock *PH = CurLoop->getLoopPreheader();
|
|
if (!PH || &PH->front() != PH->getTerminator())
|
|
return false;
|
|
auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
|
|
if (!EntryBI || EntryBI->isConditional())
|
|
return false;
|
|
|
|
// It should have a precondition block where the generated popcount intrinsic
|
|
// function can be inserted.
|
|
auto *PreCondBB = PH->getSinglePredecessor();
|
|
if (!PreCondBB)
|
|
return false;
|
|
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
|
if (!PreCondBI || PreCondBI->isUnconditional())
|
|
return false;
|
|
|
|
Instruction *CntInst;
|
|
PHINode *CntPhi;
|
|
Value *Val;
|
|
if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
|
|
return false;
|
|
|
|
transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
|
|
return true;
|
|
}
|
|
|
|
static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
|
|
const DebugLoc &DL) {
|
|
Value *Ops[] = {Val};
|
|
Type *Tys[] = {Val->getType()};
|
|
|
|
Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
|
|
Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
|
|
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
|
|
CI->setDebugLoc(DL);
|
|
|
|
return CI;
|
|
}
|
|
|
|
static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
|
|
const DebugLoc &DL, bool ZeroCheck,
|
|
Intrinsic::ID IID) {
|
|
Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
|
|
Type *Tys[] = {Val->getType()};
|
|
|
|
Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
|
|
Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
|
|
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
|
|
CI->setDebugLoc(DL);
|
|
|
|
return CI;
|
|
}
|
|
|
|
/// Transform the following loop (Using CTLZ, CTTZ is similar):
|
|
/// loop:
|
|
/// CntPhi = PHI [Cnt0, CntInst]
|
|
/// PhiX = PHI [InitX, DefX]
|
|
/// CntInst = CntPhi + 1
|
|
/// DefX = PhiX >> 1
|
|
/// LOOP_BODY
|
|
/// Br: loop if (DefX != 0)
|
|
/// Use(CntPhi) or Use(CntInst)
|
|
///
|
|
/// Into:
|
|
/// If CntPhi used outside the loop:
|
|
/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
|
|
/// Count = CountPrev + 1
|
|
/// else
|
|
/// Count = BitWidth(InitX) - CTLZ(InitX)
|
|
/// loop:
|
|
/// CntPhi = PHI [Cnt0, CntInst]
|
|
/// PhiX = PHI [InitX, DefX]
|
|
/// PhiCount = PHI [Count, Dec]
|
|
/// CntInst = CntPhi + 1
|
|
/// DefX = PhiX >> 1
|
|
/// Dec = PhiCount - 1
|
|
/// LOOP_BODY
|
|
/// Br: loop if (Dec != 0)
|
|
/// Use(CountPrev + Cnt0) // Use(CntPhi)
|
|
/// or
|
|
/// Use(Count + Cnt0) // Use(CntInst)
|
|
///
|
|
/// If LOOP_BODY is empty the loop will be deleted.
|
|
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
|
|
void LoopIdiomRecognize::transformLoopToCountable(
|
|
Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
|
|
PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
|
|
bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
|
|
BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
|
|
|
|
// Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
|
|
IRBuilder<> Builder(PreheaderBr);
|
|
Builder.SetCurrentDebugLocation(DL);
|
|
Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
|
|
|
|
// Count = BitWidth - CTLZ(InitX);
|
|
// If there are uses of CntPhi create:
|
|
// CountPrev = BitWidth - CTLZ(InitX >> 1);
|
|
if (IsCntPhiUsedOutsideLoop) {
|
|
if (DefX->getOpcode() == Instruction::AShr)
|
|
InitXNext =
|
|
Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
|
|
else if (DefX->getOpcode() == Instruction::LShr)
|
|
InitXNext =
|
|
Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
|
|
else if (DefX->getOpcode() == Instruction::Shl) // cttz
|
|
InitXNext =
|
|
Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
|
|
else
|
|
llvm_unreachable("Unexpected opcode!");
|
|
} else
|
|
InitXNext = InitX;
|
|
FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
|
|
Count = Builder.CreateSub(
|
|
ConstantInt::get(FFS->getType(),
|
|
FFS->getType()->getIntegerBitWidth()),
|
|
FFS);
|
|
if (IsCntPhiUsedOutsideLoop) {
|
|
CountPrev = Count;
|
|
Count = Builder.CreateAdd(
|
|
CountPrev,
|
|
ConstantInt::get(CountPrev->getType(), 1));
|
|
}
|
|
|
|
NewCount = Builder.CreateZExtOrTrunc(
|
|
IsCntPhiUsedOutsideLoop ? CountPrev : Count,
|
|
cast<IntegerType>(CntInst->getType()));
|
|
|
|
// If the counter's initial value is not zero, insert Add Inst.
|
|
Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
|
|
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
|
if (!InitConst || !InitConst->isZero())
|
|
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
|
|
|
|
// Step 2: Insert new IV and loop condition:
|
|
// loop:
|
|
// ...
|
|
// PhiCount = PHI [Count, Dec]
|
|
// ...
|
|
// Dec = PhiCount - 1
|
|
// ...
|
|
// Br: loop if (Dec != 0)
|
|
BasicBlock *Body = *(CurLoop->block_begin());
|
|
auto *LbBr = cast<BranchInst>(Body->getTerminator());
|
|
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
|
Type *Ty = Count->getType();
|
|
|
|
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
|
|
|
|
Builder.SetInsertPoint(LbCond);
|
|
Instruction *TcDec = cast<Instruction>(
|
|
Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
|
|
"tcdec", false, true));
|
|
|
|
TcPhi->addIncoming(Count, Preheader);
|
|
TcPhi->addIncoming(TcDec, Body);
|
|
|
|
CmpInst::Predicate Pred =
|
|
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
|
|
LbCond->setPredicate(Pred);
|
|
LbCond->setOperand(0, TcDec);
|
|
LbCond->setOperand(1, ConstantInt::get(Ty, 0));
|
|
|
|
// Step 3: All the references to the original counter outside
|
|
// the loop are replaced with the NewCount
|
|
if (IsCntPhiUsedOutsideLoop)
|
|
CntPhi->replaceUsesOutsideBlock(NewCount, Body);
|
|
else
|
|
CntInst->replaceUsesOutsideBlock(NewCount, Body);
|
|
|
|
// step 4: Forget the "non-computable" trip-count SCEV associated with the
|
|
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
|
SE->forgetLoop(CurLoop);
|
|
}
|
|
|
|
void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
|
|
Instruction *CntInst,
|
|
PHINode *CntPhi, Value *Var) {
|
|
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
|
auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
|
|
const DebugLoc &DL = CntInst->getDebugLoc();
|
|
|
|
// Assuming before transformation, the loop is following:
|
|
// if (x) // the precondition
|
|
// do { cnt++; x &= x - 1; } while(x);
|
|
|
|
// Step 1: Insert the ctpop instruction at the end of the precondition block
|
|
IRBuilder<> Builder(PreCondBr);
|
|
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
|
|
{
|
|
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
|
|
NewCount = PopCntZext =
|
|
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
|
|
|
|
if (NewCount != PopCnt)
|
|
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
|
|
|
// TripCnt is exactly the number of iterations the loop has
|
|
TripCnt = NewCount;
|
|
|
|
// If the population counter's initial value is not zero, insert Add Inst.
|
|
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
|
|
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
|
if (!InitConst || !InitConst->isZero()) {
|
|
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
|
|
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
|
}
|
|
}
|
|
|
|
// Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
|
|
// "if (NewCount == 0) loop-exit". Without this change, the intrinsic
|
|
// function would be partial dead code, and downstream passes will drag
|
|
// it back from the precondition block to the preheader.
|
|
{
|
|
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
|
|
|
|
Value *Opnd0 = PopCntZext;
|
|
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
|
|
if (PreCond->getOperand(0) != Var)
|
|
std::swap(Opnd0, Opnd1);
|
|
|
|
ICmpInst *NewPreCond = cast<ICmpInst>(
|
|
Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
|
|
PreCondBr->setCondition(NewPreCond);
|
|
|
|
RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
|
|
}
|
|
|
|
// Step 3: Note that the population count is exactly the trip count of the
|
|
// loop in question, which enable us to convert the loop from noncountable
|
|
// loop into a countable one. The benefit is twofold:
|
|
//
|
|
// - If the loop only counts population, the entire loop becomes dead after
|
|
// the transformation. It is a lot easier to prove a countable loop dead
|
|
// than to prove a noncountable one. (In some C dialects, an infinite loop
|
|
// isn't dead even if it computes nothing useful. In general, DCE needs
|
|
// to prove a noncountable loop finite before safely delete it.)
|
|
//
|
|
// - If the loop also performs something else, it remains alive.
|
|
// Since it is transformed to countable form, it can be aggressively
|
|
// optimized by some optimizations which are in general not applicable
|
|
// to a noncountable loop.
|
|
//
|
|
// After this step, this loop (conceptually) would look like following:
|
|
// newcnt = __builtin_ctpop(x);
|
|
// t = newcnt;
|
|
// if (x)
|
|
// do { cnt++; x &= x-1; t--) } while (t > 0);
|
|
BasicBlock *Body = *(CurLoop->block_begin());
|
|
{
|
|
auto *LbBr = cast<BranchInst>(Body->getTerminator());
|
|
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
|
Type *Ty = TripCnt->getType();
|
|
|
|
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
|
|
|
|
Builder.SetInsertPoint(LbCond);
|
|
Instruction *TcDec = cast<Instruction>(
|
|
Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
|
|
"tcdec", false, true));
|
|
|
|
TcPhi->addIncoming(TripCnt, PreHead);
|
|
TcPhi->addIncoming(TcDec, Body);
|
|
|
|
CmpInst::Predicate Pred =
|
|
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
|
|
LbCond->setPredicate(Pred);
|
|
LbCond->setOperand(0, TcDec);
|
|
LbCond->setOperand(1, ConstantInt::get(Ty, 0));
|
|
}
|
|
|
|
// Step 4: All the references to the original population counter outside
|
|
// the loop are replaced with the NewCount -- the value returned from
|
|
// __builtin_ctpop().
|
|
CntInst->replaceUsesOutsideBlock(NewCount, Body);
|
|
|
|
// step 5: Forget the "non-computable" trip-count SCEV associated with the
|
|
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
|
SE->forgetLoop(CurLoop);
|
|
}
|
|
|
|
bool LoopIdiomRecognize::matchBCmpLoopStructure(
|
|
CmpLoopStructure &CmpLoop) const {
|
|
ICmpInst::Predicate BCmpPred;
|
|
|
|
// We are looking for the following basic layout:
|
|
// PreheaderBB: <preheader> ; preds = ???
|
|
// <...>
|
|
// br label %LoopHeaderBB
|
|
// LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB
|
|
// <...>
|
|
// %BCmpValue = icmp <...>
|
|
// br i1 %BCmpValue, label %LoopLatchBB, label %Successor0
|
|
// LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
|
|
// <...>
|
|
// %LatchCmpValue = <are we done, or do next iteration?>
|
|
// br i1 %LatchCmpValue, label %Successor1, label %LoopHeaderBB
|
|
// Successor0: <exit> ; preds = %LoopHeaderBB
|
|
// <...>
|
|
// Successor1: <exit> ; preds = %LoopLatchBB
|
|
// <...>
|
|
//
|
|
// Successor0 and Successor1 may or may not be the same basic block.
|
|
|
|
// Match basic frame-work of this supposedly-comparison loop.
|
|
using namespace PatternMatch;
|
|
if (!match(CurLoop->getHeader()->getTerminator(),
|
|
m_Br(m_CombineAnd(m_ICmp(BCmpPred, m_Value(), m_Value()),
|
|
m_Value(CmpLoop.BCmpValue)),
|
|
CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB)) ||
|
|
!match(CurLoop->getLoopLatch()->getTerminator(),
|
|
m_Br(m_CombineAnd(m_Cmp(), m_Value(CmpLoop.LatchCmpValue)),
|
|
CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB))) {
|
|
LLVM_DEBUG(dbgs() << "Basic control-flow layout unrecognized.\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Recognized basic control-flow layout.\n");
|
|
return true;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::matchBCmpOfLoads(Value *BCmpValue,
|
|
CmpOfLoads &CmpOfLoads) const {
|
|
using namespace PatternMatch;
|
|
LLVM_DEBUG(dbgs() << "Analyzing header icmp " << *BCmpValue
|
|
<< " as bcmp pattern.\n");
|
|
|
|
// Match bcmp-style loop header cmp. It must be an eq-icmp of loads. Example:
|
|
// %v0 = load <...>, <...>* %LoadSrcA
|
|
// %v1 = load <...>, <...>* %LoadSrcB
|
|
// %CmpLoop.BCmpValue = icmp eq <...> %v0, %v1
|
|
// There won't be any no-op bitcasts between load and icmp,
|
|
// they would have been transformed into a load of bitcast.
|
|
// FIXME: {b,mem}cmp() calls have the same semantics as icmp. Match them too.
|
|
if (!match(BCmpValue,
|
|
m_ICmp(CmpOfLoads.BCmpPred,
|
|
m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcA)),
|
|
m_Value(CmpOfLoads.LoadA)),
|
|
m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcB)),
|
|
m_Value(CmpOfLoads.LoadB)))) ||
|
|
!ICmpInst::isEquality(CmpOfLoads.BCmpPred)) {
|
|
LLVM_DEBUG(dbgs() << "Loop header icmp did not match bcmp pattern.\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Recognized header icmp as bcmp pattern with loads:\n\t"
|
|
<< *CmpOfLoads.LoadA << "\n\t" << *CmpOfLoads.LoadB
|
|
<< "\n");
|
|
// FIXME: handle memcmp pattern?
|
|
return true;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::recognizeBCmpLoopControlFlow(
|
|
const CmpOfLoads &CmpOfLoads, CmpLoopStructure &CmpLoop) const {
|
|
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
|
|
BasicBlock *LoopLatchBB = CurLoop->getLoopLatch();
|
|
|
|
// Be wary, comparisons can be inverted, canonicalize order.
|
|
// If this 'element' comparison passed, we expect to proceed to the next elt.
|
|
if (CmpOfLoads.BCmpPred != ICmpInst::Predicate::ICMP_EQ)
|
|
std::swap(CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB);
|
|
// The predicate on loop latch does not matter, just canonicalize some order.
|
|
if (CmpLoop.LatchBrContinueBB != LoopHeaderBB)
|
|
std::swap(CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB);
|
|
|
|
// Check that control-flow between blocks is as expected.
|
|
if (CmpLoop.HeaderBrEqualBB != LoopLatchBB ||
|
|
CmpLoop.LatchBrContinueBB != LoopHeaderBB) {
|
|
LLVM_DEBUG(dbgs() << "Loop control-flow not recognized.\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<BasicBlock *, 2> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
assert(ExitBlocks.size() <= 2U && "Can't have more than two exit blocks.");
|
|
|
|
assert(!is_contained(ExitBlocks, CmpLoop.HeaderBrEqualBB) &&
|
|
is_contained(ExitBlocks, CmpLoop.HeaderBrUnequalBB) &&
|
|
!is_contained(ExitBlocks, CmpLoop.LatchBrContinueBB) &&
|
|
is_contained(ExitBlocks, CmpLoop.LatchBrFinishBB) &&
|
|
"Unexpected exit edges.");
|
|
|
|
LLVM_DEBUG(dbgs() << "Recognized loop control-flow.\n");
|
|
|
|
LLVM_DEBUG(dbgs() << "Performing side-effect analysis on the loop.\n");
|
|
assert(CurLoop->isLCSSAForm(*DT) && "Should only get LCSSA-form loops here.");
|
|
// No loop instructions must be used outside of the loop. Since we are in
|
|
// LCSSA form, we only need to check successor block's PHI nodes's incoming
|
|
// values for incoming blocks that are the loop basic blocks.
|
|
for (const BasicBlock *ExitBB : ExitBlocks) {
|
|
for (const PHINode &PHI : ExitBB->phis()) {
|
|
for (const BasicBlock *LoopBB :
|
|
make_filter_range(PHI.blocks(), [this](BasicBlock *PredecessorBB) {
|
|
return CurLoop->contains(PredecessorBB);
|
|
})) {
|
|
const auto *I =
|
|
dyn_cast<Instruction>(PHI.getIncomingValueForBlock(LoopBB));
|
|
if (I && CurLoop->contains(I)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Loop contains instruction " << *I
|
|
<< " which is used outside of the loop in basic block "
|
|
<< ExitBB->getName() << " in phi node " << PHI << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Similarly, the loop should not have any other observable side-effects
|
|
// other than the final comparison result.
|
|
for (BasicBlock *LoopBB : CurLoop->blocks()) {
|
|
for (Instruction &I : *LoopBB) {
|
|
if (isa<DbgInfoIntrinsic>(I)) // Ignore dbginfo.
|
|
continue; // FIXME: anything else? lifetime info?
|
|
if ((I.mayHaveSideEffects() || I.isAtomic() || I.isFenceLike()) &&
|
|
&I != CmpOfLoads.LoadA && &I != CmpOfLoads.LoadB) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Loop contains instruction with potential side-effects: "
|
|
<< I << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "No loop instructions deemed to have side-effects.\n");
|
|
return true;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes,
|
|
CmpOfLoads &CmpOfLoads,
|
|
const SCEV *&SrcA,
|
|
const SCEV *&SrcB,
|
|
const SCEV *&Iterations) const {
|
|
// Try to compute SCEV of the loads, for this loop's scope.
|
|
const auto *ScevForSrcA = dyn_cast<SCEVAddRecExpr>(
|
|
SE->getSCEVAtScope(CmpOfLoads.LoadSrcA, CurLoop));
|
|
const auto *ScevForSrcB = dyn_cast<SCEVAddRecExpr>(
|
|
SE->getSCEVAtScope(CmpOfLoads.LoadSrcB, CurLoop));
|
|
if (!ScevForSrcA || !ScevForSrcB) {
|
|
LLVM_DEBUG(dbgs() << "Failed to get SCEV expressions for load sources.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Got SCEV expressions (at loop scope) for loads:\n\t"
|
|
<< *ScevForSrcA << "\n\t" << *ScevForSrcB << "\n");
|
|
|
|
// Loads must have folloving SCEV exprs: {%ptr,+,BCmpTyBytes}<%LoopHeaderBB>
|
|
const SCEV *RecStepForA = ScevForSrcA->getStepRecurrence(*SE);
|
|
const SCEV *RecStepForB = ScevForSrcB->getStepRecurrence(*SE);
|
|
if (!ScevForSrcA->isAffine() || !ScevForSrcB->isAffine() ||
|
|
ScevForSrcA->getLoop() != CurLoop || ScevForSrcB->getLoop() != CurLoop ||
|
|
RecStepForA != RecStepForB || !isa<SCEVConstant>(RecStepForA) ||
|
|
cast<SCEVConstant>(RecStepForA)->getAPInt() != BCmpTyBytes) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads. Only support "
|
|
"affine SCEV expressions originating in the loop we "
|
|
"are analysing with identical constant positive step, "
|
|
"equal to the count of bytes compared. Got:\n\t"
|
|
<< *RecStepForA << "\n\t" << *RecStepForB << "\n");
|
|
return false;
|
|
// FIXME: can support BCmpTyBytes > Step.
|
|
// But will need to account for the extra bytes compared at the end.
|
|
}
|
|
|
|
SrcA = ScevForSrcA->getStart();
|
|
SrcB = ScevForSrcB->getStart();
|
|
LLVM_DEBUG(dbgs() << "Got SCEV expressions for load sources:\n\t" << *SrcA
|
|
<< "\n\t" << *SrcB << "\n");
|
|
|
|
// The load sources must be loop-invants that dominate the loop header.
|
|
if (SrcA == SE->getCouldNotCompute() || SrcB == SE->getCouldNotCompute() ||
|
|
!SE->isAvailableAtLoopEntry(SrcA, CurLoop) ||
|
|
!SE->isAvailableAtLoopEntry(SrcB, CurLoop)) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads, unavaliable "
|
|
"prior to loop header.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "SCEV expressions for loads are acceptable.\n");
|
|
|
|
// For how many iterations is loop guaranteed not to exit via LoopLatch?
|
|
// This is one less than the maximal number of comparisons,and is: n + -1
|
|
const SCEV *LoopExitCount =
|
|
SE->getExitCount(CurLoop, CurLoop->getLoopLatch());
|
|
LLVM_DEBUG(dbgs() << "Got SCEV expression for loop latch exit count: "
|
|
<< *LoopExitCount << "\n");
|
|
// Exit count, similarly, must be loop-invant that dominates the loop header.
|
|
if (LoopExitCount == SE->getCouldNotCompute() ||
|
|
!LoopExitCount->getType()->isIntOrPtrTy() ||
|
|
!SE->isAvailableAtLoopEntry(LoopExitCount, CurLoop)) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported SCEV expression for loop latch exit.\n");
|
|
return false;
|
|
}
|
|
|
|
// LoopExitCount is always one less than the actual count of iterations.
|
|
// Do this before cast, else we will be stuck with 1 + zext(-1 + n)
|
|
Iterations = SE->getAddExpr(
|
|
LoopExitCount, SE->getOne(LoopExitCount->getType()), SCEV::FlagNUW);
|
|
assert(Iterations != SE->getCouldNotCompute() &&
|
|
"Shouldn't fail to increment by one.");
|
|
|
|
LLVM_DEBUG(dbgs() << "Computed iteration count: " << *Iterations << "\n");
|
|
return true;
|
|
}
|
|
|
|
/// Return true iff the bcmp idiom is detected in the loop.
|
|
///
|
|
/// Additionally:
|
|
/// 1) \p BCmpInst is set to the root byte-comparison instruction.
|
|
/// 2) \p LatchCmpInst is set to the comparison that controls the latch.
|
|
/// 3) \p LoadA is set to the first LoadInst.
|
|
/// 4) \p LoadB is set to the second LoadInst.
|
|
/// 5) \p SrcA is set to the first source location that is being compared.
|
|
/// 6) \p SrcB is set to the second source location that is being compared.
|
|
/// 7) \p NBytes is set to the number of bytes to compare.
|
|
bool LoopIdiomRecognize::detectBCmpIdiom(ICmpInst *&BCmpInst,
|
|
CmpInst *&LatchCmpInst,
|
|
LoadInst *&LoadA, LoadInst *&LoadB,
|
|
const SCEV *&SrcA, const SCEV *&SrcB,
|
|
const SCEV *&NBytes) const {
|
|
LLVM_DEBUG(dbgs() << "Recognizing bcmp idiom\n");
|
|
|
|
// Give up if the loop is not in normal form, or has more than 2 blocks.
|
|
if (!CurLoop->isLoopSimplifyForm() || CurLoop->getNumBlocks() > 2) {
|
|
LLVM_DEBUG(dbgs() << "Basic loop structure unrecognized.\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Recognized basic loop structure.\n");
|
|
|
|
CmpLoopStructure CmpLoop;
|
|
if (!matchBCmpLoopStructure(CmpLoop))
|
|
return false;
|
|
|
|
CmpOfLoads CmpOfLoads;
|
|
if (!matchBCmpOfLoads(CmpLoop.BCmpValue, CmpOfLoads))
|
|
return false;
|
|
|
|
if (!recognizeBCmpLoopControlFlow(CmpOfLoads, CmpLoop))
|
|
return false;
|
|
|
|
BCmpInst = cast<ICmpInst>(CmpLoop.BCmpValue); // FIXME: is there no
|
|
LatchCmpInst = cast<CmpInst>(CmpLoop.LatchCmpValue); // way to combine
|
|
LoadA = cast<LoadInst>(CmpOfLoads.LoadA); // these cast with
|
|
LoadB = cast<LoadInst>(CmpOfLoads.LoadB); // m_Value() matcher?
|
|
|
|
Type *BCmpValTy = BCmpInst->getOperand(0)->getType();
|
|
LLVMContext &Context = BCmpValTy->getContext();
|
|
uint64_t BCmpTyBits = DL->getTypeSizeInBits(BCmpValTy);
|
|
static constexpr uint64_t ByteTyBits = 8;
|
|
|
|
LLVM_DEBUG(dbgs() << "Got comparison between values of type " << *BCmpValTy
|
|
<< " of size " << BCmpTyBits
|
|
<< " bits (while byte = " << ByteTyBits << " bits).\n");
|
|
// bcmp()/memcmp() minimal unit of work is a byte. Therefore we must check
|
|
// that we are dealing with a multiple of a byte here.
|
|
if (BCmpTyBits % ByteTyBits != 0) {
|
|
LLVM_DEBUG(dbgs() << "Value size is not a multiple of byte.\n");
|
|
return false;
|
|
// FIXME: could still be done under a run-time check that the total bit
|
|
// count is a multiple of a byte i guess? Or handle remainder separately?
|
|
}
|
|
|
|
// Each comparison is done on this many bytes.
|
|
uint64_t BCmpTyBytes = BCmpTyBits / ByteTyBits;
|
|
LLVM_DEBUG(dbgs() << "Size is exactly " << BCmpTyBytes
|
|
<< " bytes, eligible for bcmp conversion.\n");
|
|
|
|
const SCEV *Iterations;
|
|
if (!recognizeBCmpLoopSCEV(BCmpTyBytes, CmpOfLoads, SrcA, SrcB, Iterations))
|
|
return false;
|
|
|
|
// bcmp / memcmp take length argument as size_t, do promotion now.
|
|
Type *CmpFuncSizeTy = DL->getIntPtrType(Context);
|
|
Iterations = SE->getNoopOrZeroExtend(Iterations, CmpFuncSizeTy);
|
|
assert(Iterations != SE->getCouldNotCompute() && "Promotion failed.");
|
|
// Note that it didn't do ptrtoint cast, we will need to do it manually.
|
|
|
|
// We will be comparing *bytes*, not BCmpTy, we need to recalculate size.
|
|
// It's a multiplication, and it *could* overflow. But for it to overflow
|
|
// we'd want to compare more bytes than could be represented by size_t, But
|
|
// allocation functions also take size_t. So how'd you produce such buffer?
|
|
// FIXME: we likely need to actually check that we know this won't overflow,
|
|
// via llvm::computeOverflowForUnsignedMul().
|
|
NBytes = SE->getMulExpr(
|
|
Iterations, SE->getConstant(CmpFuncSizeTy, BCmpTyBytes), SCEV::FlagNUW);
|
|
assert(NBytes != SE->getCouldNotCompute() &&
|
|
"Shouldn't fail to increment by one.");
|
|
|
|
LLVM_DEBUG(dbgs() << "Computed total byte count: " << *NBytes << "\n");
|
|
|
|
if (LoadA->getPointerAddressSpace() != LoadB->getPointerAddressSpace() ||
|
|
LoadA->getPointerAddressSpace() != 0 || !LoadA->isSimple() ||
|
|
!LoadB->isSimple()) {
|
|
StringLiteral L("Unsupported loads in idiom - only support identical, "
|
|
"simple loads from address space 0.\n");
|
|
LLVM_DEBUG(dbgs() << L);
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "BCmpIdiomUnsupportedLoads",
|
|
BCmpInst->getDebugLoc(),
|
|
CurLoop->getHeader())
|
|
<< L;
|
|
});
|
|
return false; // FIXME
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Recognized bcmp idiom\n");
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkAnalysis(DEBUG_TYPE, "RecognizedBCmpIdiom",
|
|
CurLoop->getStartLoc(),
|
|
CurLoop->getHeader())
|
|
<< "Loop recognized as a bcmp idiom";
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
BasicBlock *
|
|
LoopIdiomRecognize::transformBCmpControlFlow(ICmpInst *ComparedEqual) {
|
|
LLVM_DEBUG(dbgs() << "Transforming control-flow.\n");
|
|
SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
|
|
|
|
BasicBlock *PreheaderBB = CurLoop->getLoopPreheader();
|
|
BasicBlock *HeaderBB = CurLoop->getHeader();
|
|
BasicBlock *LoopLatchBB = CurLoop->getLoopLatch();
|
|
SmallString<32> LoopName = CurLoop->getName();
|
|
Function *Func = PreheaderBB->getParent();
|
|
LLVMContext &Context = Func->getContext();
|
|
|
|
// Before doing anything, drop SCEV info.
|
|
SE->forgetLoop(CurLoop);
|
|
|
|
// Here we start with: (0/6)
|
|
// PreheaderBB: <preheader> ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// br label %LoopHeaderBB
|
|
// LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB
|
|
// <...>
|
|
// br i1 %<...>, label %LoopLatchBB, label %Successor0BB
|
|
// LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
|
|
// <...>
|
|
// br i1 %<...>, label %Successor1BB, label %LoopHeaderBB
|
|
// Successor0BB: <exit> ; preds = %LoopHeaderBB
|
|
// %S0PHI = phi <...> [ <...>, %LoopHeaderBB ]
|
|
// <...>
|
|
// Successor1BB: <exit> ; preds = %LoopLatchBB
|
|
// %S1PHI = phi <...> [ <...>, %LoopLatchBB ]
|
|
// <...>
|
|
//
|
|
// Successor0 and Successor1 may or may not be the same basic block.
|
|
|
|
// Decouple the edge between loop preheader basic block and loop header basic
|
|
// block. Thus the loop has become unreachable.
|
|
assert(cast<BranchInst>(PreheaderBB->getTerminator())->isUnconditional() &&
|
|
PreheaderBB->getTerminator()->getSuccessor(0) == HeaderBB &&
|
|
"Preheader bb must end with an unconditional branch to header bb.");
|
|
PreheaderBB->getTerminator()->eraseFromParent();
|
|
DTUpdates.push_back({DominatorTree::Delete, PreheaderBB, HeaderBB});
|
|
|
|
// Create a new preheader basic block before loop header basic block.
|
|
auto *PhonyPreheaderBB = BasicBlock::Create(
|
|
Context, LoopName + ".phonypreheaderbb", Func, HeaderBB);
|
|
// And insert an unconditional branch from phony preheader basic block to
|
|
// loop header basic block.
|
|
IRBuilder<>(PhonyPreheaderBB).CreateBr(HeaderBB);
|
|
DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB});
|
|
|
|
// Create a *single* new empty block that we will substitute as a
|
|
// successor basic block for the loop's exits. This one is temporary.
|
|
// Much like phony preheader basic block, it is not connected.
|
|
auto *PhonySuccessorBB =
|
|
BasicBlock::Create(Context, LoopName + ".phonysuccessorbb", Func,
|
|
LoopLatchBB->getNextNode());
|
|
// That block must have *some* non-PHI instruction, or else deleteDeadLoop()
|
|
// will mess up cleanup of dbginfo, and verifier will complain.
|
|
IRBuilder<>(PhonySuccessorBB).CreateUnreachable();
|
|
|
|
// Create two new empty blocks that we will use to preserve the original
|
|
// loop exit control-flow, and preserve the incoming values in the PHI nodes
|
|
// in loop's successor exit blocks. These will live one.
|
|
auto *ComparedUnequalBB =
|
|
BasicBlock::Create(Context, ComparedEqual->getName() + ".unequalbb", Func,
|
|
PhonySuccessorBB->getNextNode());
|
|
auto *ComparedEqualBB =
|
|
BasicBlock::Create(Context, ComparedEqual->getName() + ".equalbb", Func,
|
|
PhonySuccessorBB->getNextNode());
|
|
|
|
// By now we have: (1/6)
|
|
// PreheaderBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// [no terminator instruction!]
|
|
// PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE!
|
|
// br label %LoopHeaderBB
|
|
// LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB
|
|
// <...>
|
|
// br i1 %<...>, label %LoopLatchBB, label %Successor0BB
|
|
// LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
|
|
// <...>
|
|
// br i1 %<...>, label %Successor1BB, label %LoopHeaderBB
|
|
// PhonySuccessorBB: ; No preds, UNREACHABLE!
|
|
// unreachable
|
|
// EqualBB: ; No preds, UNREACHABLE!
|
|
// [no terminator instruction!]
|
|
// UnequalBB: ; No preds, UNREACHABLE!
|
|
// [no terminator instruction!]
|
|
// Successor0BB: <exit> ; preds = %LoopHeaderBB
|
|
// %S0PHI = phi <...> [ <...>, %LoopHeaderBB ]
|
|
// <...>
|
|
// Successor1BB: <exit> ; preds = %LoopLatchBB
|
|
// %S1PHI = phi <...> [ <...>, %LoopLatchBB ]
|
|
// <...>
|
|
|
|
// What is the mapping/replacement basic block for exiting out of the loop
|
|
// from either of old's loop basic blocks?
|
|
auto GetReplacementBB = [this, ComparedEqualBB,
|
|
ComparedUnequalBB](const BasicBlock *OldBB) {
|
|
assert(CurLoop->contains(OldBB) && "Only for loop's basic blocks.");
|
|
if (OldBB == CurLoop->getLoopLatch()) // "all elements compared equal".
|
|
return ComparedEqualBB;
|
|
if (OldBB == CurLoop->getHeader()) // "element compared unequal".
|
|
return ComparedUnequalBB;
|
|
llvm_unreachable("Only had two basic blocks in loop.");
|
|
};
|
|
|
|
// What are the exits out of this loop?
|
|
SmallVector<Loop::Edge, 2> LoopExitEdges;
|
|
CurLoop->getExitEdges(LoopExitEdges);
|
|
assert(LoopExitEdges.size() == 2 && "Should have only to two exit edges.");
|
|
|
|
// Populate new basic blocks, update the exiting control-flow, PHI nodes.
|
|
for (const Loop::Edge &Edge : LoopExitEdges) {
|
|
auto *OldLoopBB = const_cast<BasicBlock *>(Edge.first);
|
|
auto *SuccessorBB = const_cast<BasicBlock *>(Edge.second);
|
|
assert(CurLoop->contains(OldLoopBB) && !CurLoop->contains(SuccessorBB) &&
|
|
"Unexpected edge.");
|
|
|
|
// If we would exit the loop from this loop's basic block,
|
|
// what semantically would that mean? Did comparison succeed or fail?
|
|
BasicBlock *NewBB = GetReplacementBB(OldLoopBB);
|
|
assert(NewBB->empty() && "Should not get same new basic block here twice.");
|
|
IRBuilder<> Builder(NewBB);
|
|
Builder.SetCurrentDebugLocation(OldLoopBB->getTerminator()->getDebugLoc());
|
|
Builder.CreateBr(SuccessorBB);
|
|
DTUpdates.push_back({DominatorTree::Insert, NewBB, SuccessorBB});
|
|
// Also, be *REALLY* careful with PHI nodes in successor basic block,
|
|
// update them to recieve the same input value, but not from current loop's
|
|
// basic block, but from new basic block instead.
|
|
SuccessorBB->replacePhiUsesWith(OldLoopBB, NewBB);
|
|
// Also, change loop control-flow. This loop's basic block shall no longer
|
|
// exit from the loop to it's original successor basic block, but to our new
|
|
// phony successor basic block. Note that new successor will be unique exit.
|
|
OldLoopBB->getTerminator()->replaceSuccessorWith(SuccessorBB,
|
|
PhonySuccessorBB);
|
|
DTUpdates.push_back({DominatorTree::Delete, OldLoopBB, SuccessorBB});
|
|
DTUpdates.push_back({DominatorTree::Insert, OldLoopBB, PhonySuccessorBB});
|
|
}
|
|
|
|
// Inform DomTree about edge changes. Note that LoopInfo is still out-of-date.
|
|
assert(DTUpdates.size() == 8 && "Update count prediction failed.");
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
DTU.applyUpdates(DTUpdates);
|
|
DTUpdates.clear();
|
|
|
|
// By now we have: (2/6)
|
|
// PreheaderBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// [no terminator instruction!]
|
|
// PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE!
|
|
// br label %LoopHeaderBB
|
|
// LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB
|
|
// <...>
|
|
// br i1 %<...>, label %LoopLatchBB, label %PhonySuccessorBB
|
|
// LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
|
|
// <...>
|
|
// br i1 %<...>, label %PhonySuccessorBB, label %LoopHeaderBB
|
|
// PhonySuccessorBB: <uniq. exit> ; preds = %LoopHeaderBB, %LoopLatchBB
|
|
// unreachable
|
|
// EqualBB: ; No preds, UNREACHABLE!
|
|
// br label %Successor1BB
|
|
// UnequalBB: ; No preds, UNREACHABLE!
|
|
// br label %Successor0BB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
// *Finally*, zap the original loop. Record it's parent loop though.
|
|
Loop *ParentLoop = CurLoop->getParentLoop();
|
|
LLVM_DEBUG(dbgs() << "Deleting old loop.\n");
|
|
LoopDeleter.markLoopAsDeleted(CurLoop); // Mark as deleted *BEFORE* deleting!
|
|
deleteDeadLoop(CurLoop, DT, SE, LI); // And actually delete the loop.
|
|
CurLoop = nullptr;
|
|
|
|
// By now we have: (3/6)
|
|
// PreheaderBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// [no terminator instruction!]
|
|
// PhonyPreheaderBB: ; No preds, UNREACHABLE!
|
|
// br label %PhonySuccessorBB
|
|
// PhonySuccessorBB: ; preds = %PhonyPreheaderBB
|
|
// unreachable
|
|
// EqualBB: ; No preds, UNREACHABLE!
|
|
// br label %Successor1BB
|
|
// UnequalBB: ; No preds, UNREACHABLE!
|
|
// br label %Successor0BB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
// Now, actually restore the CFG.
|
|
|
|
// Insert an unconditional branch from an actual preheader basic block to
|
|
// phony preheader basic block.
|
|
IRBuilder<>(PreheaderBB).CreateBr(PhonyPreheaderBB);
|
|
DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB});
|
|
// Insert proper conditional branch from phony successor basic block to the
|
|
// "dispatch" basic blocks, which were used to preserve incoming values in
|
|
// original loop's successor basic blocks.
|
|
assert(isa<UnreachableInst>(PhonySuccessorBB->getTerminator()) &&
|
|
"Yep, that's the one we created to keep deleteDeadLoop() happy.");
|
|
PhonySuccessorBB->getTerminator()->eraseFromParent();
|
|
{
|
|
IRBuilder<> Builder(PhonySuccessorBB);
|
|
Builder.SetCurrentDebugLocation(ComparedEqual->getDebugLoc());
|
|
Builder.CreateCondBr(ComparedEqual, ComparedEqualBB, ComparedUnequalBB);
|
|
}
|
|
DTUpdates.push_back(
|
|
{DominatorTree::Insert, PhonySuccessorBB, ComparedEqualBB});
|
|
DTUpdates.push_back(
|
|
{DominatorTree::Insert, PhonySuccessorBB, ComparedUnequalBB});
|
|
|
|
BasicBlock *DispatchBB = PhonySuccessorBB;
|
|
DispatchBB->setName(LoopName + ".bcmpdispatchbb");
|
|
|
|
assert(DTUpdates.size() == 3 && "Update count prediction failed.");
|
|
DTU.applyUpdates(DTUpdates);
|
|
DTUpdates.clear();
|
|
|
|
// By now we have: (4/6)
|
|
// PreheaderBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// br label %PhonyPreheaderBB
|
|
// PhonyPreheaderBB: ; preds = %PreheaderBB
|
|
// br label %DispatchBB
|
|
// DispatchBB: ; preds = %PhonyPreheaderBB
|
|
// br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
|
|
// EqualBB: ; preds = %DispatchBB
|
|
// br label %Successor1BB
|
|
// UnequalBB: ; preds = %DispatchBB
|
|
// br label %Successor0BB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
// The basic CFG has been restored! Now let's merge redundant basic blocks.
|
|
|
|
// Merge phony successor basic block into it's only predecessor,
|
|
// phony preheader basic block. It is fully pointlessly redundant.
|
|
MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU);
|
|
|
|
// By now we have: (5/6)
|
|
// PreheaderBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// br label %DispatchBB
|
|
// DispatchBB: ; preds = %PreheaderBB
|
|
// br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
|
|
// EqualBB: ; preds = %DispatchBB
|
|
// br label %Successor1BB
|
|
// UnequalBB: ; preds = %DispatchBB
|
|
// br label %Successor0BB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
// Was this loop nested?
|
|
if (!ParentLoop) {
|
|
// If the loop was *NOT* nested, then let's also merge phony successor
|
|
// basic block into it's only predecessor, preheader basic block.
|
|
// Also, here we need to update LoopInfo.
|
|
LI->removeBlock(PreheaderBB);
|
|
MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU);
|
|
|
|
// By now we have: (6/6)
|
|
// DispatchBB: ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
|
|
// EqualBB: ; preds = %DispatchBB
|
|
// br label %Successor1BB
|
|
// UnequalBB: ; preds = %DispatchBB
|
|
// br label %Successor0BB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
return DispatchBB;
|
|
}
|
|
|
|
// Otherwise, we need to "preserve" the LoopSimplify form of the deleted loop.
|
|
// To achieve that, we shall keep the preheader basic block (mainly so that
|
|
// the loop header block will be guaranteed to have a predecessor outside of
|
|
// the loop), and create a phony loop with all these new three basic blocks.
|
|
Loop *PhonyLoop = LI->AllocateLoop();
|
|
ParentLoop->addChildLoop(PhonyLoop);
|
|
PhonyLoop->addBasicBlockToLoop(DispatchBB, *LI);
|
|
PhonyLoop->addBasicBlockToLoop(ComparedEqualBB, *LI);
|
|
PhonyLoop->addBasicBlockToLoop(ComparedUnequalBB, *LI);
|
|
|
|
// But we only have a preheader basic block, a header basic block block and
|
|
// two exiting basic blocks. For a proper loop we also need a backedge from
|
|
// non-header basic block to header bb.
|
|
// Let's just add a never-taken branch from both of the exiting basic blocks.
|
|
for (BasicBlock *BB : {ComparedEqualBB, ComparedUnequalBB}) {
|
|
BranchInst *OldTerminator = cast<BranchInst>(BB->getTerminator());
|
|
assert(OldTerminator->isUnconditional() && "That's the one we created.");
|
|
BasicBlock *SuccessorBB = OldTerminator->getSuccessor(0);
|
|
|
|
IRBuilder<> Builder(OldTerminator);
|
|
Builder.SetCurrentDebugLocation(OldTerminator->getDebugLoc());
|
|
Builder.CreateCondBr(ConstantInt::getTrue(Context), SuccessorBB,
|
|
DispatchBB);
|
|
OldTerminator->eraseFromParent();
|
|
// Yes, the backedge will never be taken. The control-flow is redundant.
|
|
// If it can be simplified further, other passes will take care.
|
|
DTUpdates.push_back({DominatorTree::Delete, BB, SuccessorBB});
|
|
DTUpdates.push_back({DominatorTree::Insert, BB, SuccessorBB});
|
|
DTUpdates.push_back({DominatorTree::Insert, BB, DispatchBB});
|
|
}
|
|
assert(DTUpdates.size() == 6 && "Update count prediction failed.");
|
|
DTU.applyUpdates(DTUpdates);
|
|
DTUpdates.clear();
|
|
|
|
// By now we have: (6/6)
|
|
// PreheaderBB: <preheader> ; preds = ???
|
|
// <...>
|
|
// %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
|
|
// %ComparedEqual = icmp eq <...> %memcmp, 0
|
|
// br label %BCmpDispatchBB
|
|
// BCmpDispatchBB: <header> ; preds = %PreheaderBB
|
|
// br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
|
|
// EqualBB: <latch,exiting> ; preds = %BCmpDispatchBB
|
|
// br i1 %true, label %Successor1BB, label %BCmpDispatchBB
|
|
// UnequalBB: <latch,exiting> ; preds = %BCmpDispatchBB
|
|
// br i1 %true, label %Successor0BB, label %BCmpDispatchBB
|
|
// Successor0BB: ; preds = %UnequalBB
|
|
// %S0PHI = phi <...> [ <...>, %UnequalBB ]
|
|
// <...>
|
|
// Successor1BB: ; preds = %EqualBB
|
|
// %S0PHI = phi <...> [ <...>, %EqualBB ]
|
|
// <...>
|
|
|
|
// Finally fully DONE!
|
|
return DispatchBB;
|
|
}
|
|
|
|
void LoopIdiomRecognize::transformLoopToBCmp(ICmpInst *BCmpInst,
|
|
CmpInst *LatchCmpInst,
|
|
LoadInst *LoadA, LoadInst *LoadB,
|
|
const SCEV *SrcA, const SCEV *SrcB,
|
|
const SCEV *NBytes) {
|
|
// We will be inserting before the terminator instruction of preheader block.
|
|
IRBuilder<> Builder(CurLoop->getLoopPreheader()->getTerminator());
|
|
|
|
LLVM_DEBUG(dbgs() << "Transforming bcmp loop idiom into a call.\n");
|
|
LLVM_DEBUG(dbgs() << "Emitting new instructions.\n");
|
|
|
|
// Expand the SCEV expressions for both sources to compare, and produce value
|
|
// for the byte len (beware of Iterations potentially being a pointer, and
|
|
// account for element size being BCmpTyBytes bytes, which may be not 1 byte)
|
|
Value *PtrA, *PtrB, *Len;
|
|
{
|
|
SCEVExpander SExp(*SE, *DL, "LoopToBCmp");
|
|
SExp.setInsertPoint(&*Builder.GetInsertPoint());
|
|
|
|
auto HandlePtr = [&SExp](LoadInst *Load, const SCEV *Src) {
|
|
SExp.SetCurrentDebugLocation(DebugLoc());
|
|
// If the pointer operand of original load had dbgloc - use it.
|
|
if (const auto *I = dyn_cast<Instruction>(Load->getPointerOperand()))
|
|
SExp.SetCurrentDebugLocation(I->getDebugLoc());
|
|
return SExp.expandCodeFor(Src);
|
|
};
|
|
PtrA = HandlePtr(LoadA, SrcA);
|
|
PtrB = HandlePtr(LoadB, SrcB);
|
|
|
|
// For len calculation let's use dbgloc for the loop's latch condition.
|
|
Builder.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc());
|
|
SExp.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc());
|
|
Len = SExp.expandCodeFor(NBytes);
|
|
|
|
Type *CmpFuncSizeTy = DL->getIntPtrType(Builder.getContext());
|
|
assert(SE->getTypeSizeInBits(Len->getType()) ==
|
|
DL->getTypeSizeInBits(CmpFuncSizeTy) &&
|
|
"Len should already have the correct size.");
|
|
|
|
// Make sure that iteration count is a number, insert ptrtoint cast if not.
|
|
if (Len->getType()->isPointerTy())
|
|
Len = Builder.CreatePtrToInt(Len, CmpFuncSizeTy);
|
|
assert(Len->getType() == CmpFuncSizeTy && "Should have correct type now.");
|
|
|
|
Len->setName(Len->getName() + ".bytecount");
|
|
|
|
// There is no legality check needed. We want to compare that the memory
|
|
// regions [PtrA, PtrA+Len) and [PtrB, PtrB+Len) are fully identical, equal.
|
|
// For them to be fully equal, they must match bit-by-bit. And likewise,
|
|
// for them to *NOT* be fully equal, they have to differ just by one bit.
|
|
// The step of comparison (bits compared at once) simply does not matter.
|
|
}
|
|
|
|
// For the rest of new instructions, dbgloc should point at the value cmp.
|
|
Builder.SetCurrentDebugLocation(BCmpInst->getDebugLoc());
|
|
|
|
// Emit the comparison itself.
|
|
auto *CmpCall =
|
|
cast<CallInst>(HasBCmp ? emitBCmp(PtrA, PtrB, Len, Builder, *DL, TLI)
|
|
: emitMemCmp(PtrA, PtrB, Len, Builder, *DL, TLI));
|
|
// FIXME: add {B,Mem}CmpInst with MemoryCompareInst
|
|
// (based on MemIntrinsicBase) as base?
|
|
// FIXME: propagate metadata from loads? (alignments, AS, TBAA, ...)
|
|
|
|
// {b,mem}cmp returned 0 if they were equal, or non-zero if not equal.
|
|
auto *ComparedEqual = cast<ICmpInst>(Builder.CreateICmpEQ(
|
|
CmpCall, ConstantInt::get(CmpCall->getType(), 0),
|
|
PtrA->getName() + ".vs." + PtrB->getName() + ".eqcmp"));
|
|
|
|
BasicBlock *BB = transformBCmpControlFlow(ComparedEqual);
|
|
Builder.ClearInsertionPoint();
|
|
|
|
// We're done.
|
|
LLVM_DEBUG(dbgs() << "Transformed loop bcmp idiom into a call.\n");
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "TransformedBCmpIdiomToCall",
|
|
CmpCall->getDebugLoc(), BB)
|
|
<< "Transformed bcmp idiom into a call to "
|
|
<< ore::NV("NewFunction", CmpCall->getCalledFunction())
|
|
<< "() function";
|
|
});
|
|
++NumBCmp;
|
|
}
|
|
|
|
/// Recognizes a bcmp idiom in a non-countable loop.
|
|
///
|
|
/// If detected, transforms the relevant code to issue the bcmp (or memcmp)
|
|
/// intrinsic function call, and returns true; otherwise, returns false.
|
|
bool LoopIdiomRecognize::recognizeBCmp() {
|
|
if (!HasMemCmp && !HasBCmp)
|
|
return false;
|
|
|
|
ICmpInst *BCmpInst;
|
|
CmpInst *LatchCmpInst;
|
|
LoadInst *LoadA, *LoadB;
|
|
const SCEV *SrcA, *SrcB, *NBytes;
|
|
if (!detectBCmpIdiom(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB,
|
|
NBytes)) {
|
|
LLVM_DEBUG(dbgs() << "bcmp idiom recognition failed.\n");
|
|
return false;
|
|
}
|
|
|
|
transformLoopToBCmp(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, NBytes);
|
|
return true;
|
|
}
|