1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/MC/MCWin64EH.cpp
Martin Storsjö 0f20d48a09 Reapply "[CodeGen] [WinException] Only produce handler data at the end of the function if needed"
This reapplies 36c64af9d7f97414d48681b74352c9684077259b in updated
form.

Emit the xdata for each function at .seh_endproc. This keeps the
exact same output header order for most code generated by the LLVM
CodeGen layer. (Sections still change order for code built from
assembly where functions lack an explicit .seh_handlerdata
directive, and functions with chained unwind info.)

The practical effect should be that assembly output lacks
superfluous ".seh_handlerdata; .text" pairs at the end of functions
that don't handle exceptions, which allows such functions to use
the AArch64 packed unwind format again.

Differential Revision: https://reviews.llvm.org/D87448
2020-11-23 23:17:03 +02:00

1130 lines
38 KiB
C++

//===- lib/MC/MCWin64EH.cpp - MCWin64EH implementation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCWin64EH.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Win64EH.h"
using namespace llvm;
// NOTE: All relocations generated here are 4-byte image-relative.
static uint8_t CountOfUnwindCodes(std::vector<WinEH::Instruction> &Insns) {
uint8_t Count = 0;
for (const auto &I : Insns) {
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
default:
llvm_unreachable("Unsupported unwind code");
case Win64EH::UOP_PushNonVol:
case Win64EH::UOP_AllocSmall:
case Win64EH::UOP_SetFPReg:
case Win64EH::UOP_PushMachFrame:
Count += 1;
break;
case Win64EH::UOP_SaveNonVol:
case Win64EH::UOP_SaveXMM128:
Count += 2;
break;
case Win64EH::UOP_SaveNonVolBig:
case Win64EH::UOP_SaveXMM128Big:
Count += 3;
break;
case Win64EH::UOP_AllocLarge:
Count += (I.Offset > 512 * 1024 - 8) ? 3 : 2;
break;
}
}
return Count;
}
static void EmitAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS,
const MCSymbol *RHS) {
MCContext &Context = Streamer.getContext();
const MCExpr *Diff =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context),
MCSymbolRefExpr::create(RHS, Context), Context);
Streamer.emitValue(Diff, 1);
}
static void EmitUnwindCode(MCStreamer &streamer, const MCSymbol *begin,
WinEH::Instruction &inst) {
uint8_t b2;
uint16_t w;
b2 = (inst.Operation & 0x0F);
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
default:
llvm_unreachable("Unsupported unwind code");
case Win64EH::UOP_PushNonVol:
EmitAbsDifference(streamer, inst.Label, begin);
b2 |= (inst.Register & 0x0F) << 4;
streamer.emitInt8(b2);
break;
case Win64EH::UOP_AllocLarge:
EmitAbsDifference(streamer, inst.Label, begin);
if (inst.Offset > 512 * 1024 - 8) {
b2 |= 0x10;
streamer.emitInt8(b2);
w = inst.Offset & 0xFFF8;
streamer.emitInt16(w);
w = inst.Offset >> 16;
} else {
streamer.emitInt8(b2);
w = inst.Offset >> 3;
}
streamer.emitInt16(w);
break;
case Win64EH::UOP_AllocSmall:
b2 |= (((inst.Offset - 8) >> 3) & 0x0F) << 4;
EmitAbsDifference(streamer, inst.Label, begin);
streamer.emitInt8(b2);
break;
case Win64EH::UOP_SetFPReg:
EmitAbsDifference(streamer, inst.Label, begin);
streamer.emitInt8(b2);
break;
case Win64EH::UOP_SaveNonVol:
case Win64EH::UOP_SaveXMM128:
b2 |= (inst.Register & 0x0F) << 4;
EmitAbsDifference(streamer, inst.Label, begin);
streamer.emitInt8(b2);
w = inst.Offset >> 3;
if (inst.Operation == Win64EH::UOP_SaveXMM128)
w >>= 1;
streamer.emitInt16(w);
break;
case Win64EH::UOP_SaveNonVolBig:
case Win64EH::UOP_SaveXMM128Big:
b2 |= (inst.Register & 0x0F) << 4;
EmitAbsDifference(streamer, inst.Label, begin);
streamer.emitInt8(b2);
if (inst.Operation == Win64EH::UOP_SaveXMM128Big)
w = inst.Offset & 0xFFF0;
else
w = inst.Offset & 0xFFF8;
streamer.emitInt16(w);
w = inst.Offset >> 16;
streamer.emitInt16(w);
break;
case Win64EH::UOP_PushMachFrame:
if (inst.Offset == 1)
b2 |= 0x10;
EmitAbsDifference(streamer, inst.Label, begin);
streamer.emitInt8(b2);
break;
}
}
static void EmitSymbolRefWithOfs(MCStreamer &streamer,
const MCSymbol *Base,
const MCSymbol *Other) {
MCContext &Context = streamer.getContext();
const MCSymbolRefExpr *BaseRef = MCSymbolRefExpr::create(Base, Context);
const MCSymbolRefExpr *OtherRef = MCSymbolRefExpr::create(Other, Context);
const MCExpr *Ofs = MCBinaryExpr::createSub(OtherRef, BaseRef, Context);
const MCSymbolRefExpr *BaseRefRel = MCSymbolRefExpr::create(Base,
MCSymbolRefExpr::VK_COFF_IMGREL32,
Context);
streamer.emitValue(MCBinaryExpr::createAdd(BaseRefRel, Ofs, Context), 4);
}
static void EmitRuntimeFunction(MCStreamer &streamer,
const WinEH::FrameInfo *info) {
MCContext &context = streamer.getContext();
streamer.emitValueToAlignment(4);
EmitSymbolRefWithOfs(streamer, info->Function, info->Begin);
EmitSymbolRefWithOfs(streamer, info->Function, info->End);
streamer.emitValue(MCSymbolRefExpr::create(info->Symbol,
MCSymbolRefExpr::VK_COFF_IMGREL32,
context), 4);
}
static void EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info) {
// If this UNWIND_INFO already has a symbol, it's already been emitted.
if (info->Symbol)
return;
MCContext &context = streamer.getContext();
MCSymbol *Label = context.createTempSymbol();
streamer.emitValueToAlignment(4);
streamer.emitLabel(Label);
info->Symbol = Label;
// Upper 3 bits are the version number (currently 1).
uint8_t flags = 0x01;
if (info->ChainedParent)
flags |= Win64EH::UNW_ChainInfo << 3;
else {
if (info->HandlesUnwind)
flags |= Win64EH::UNW_TerminateHandler << 3;
if (info->HandlesExceptions)
flags |= Win64EH::UNW_ExceptionHandler << 3;
}
streamer.emitInt8(flags);
if (info->PrologEnd)
EmitAbsDifference(streamer, info->PrologEnd, info->Begin);
else
streamer.emitInt8(0);
uint8_t numCodes = CountOfUnwindCodes(info->Instructions);
streamer.emitInt8(numCodes);
uint8_t frame = 0;
if (info->LastFrameInst >= 0) {
WinEH::Instruction &frameInst = info->Instructions[info->LastFrameInst];
assert(frameInst.Operation == Win64EH::UOP_SetFPReg);
frame = (frameInst.Register & 0x0F) | (frameInst.Offset & 0xF0);
}
streamer.emitInt8(frame);
// Emit unwind instructions (in reverse order).
uint8_t numInst = info->Instructions.size();
for (uint8_t c = 0; c < numInst; ++c) {
WinEH::Instruction inst = info->Instructions.back();
info->Instructions.pop_back();
EmitUnwindCode(streamer, info->Begin, inst);
}
// For alignment purposes, the instruction array will always have an even
// number of entries, with the final entry potentially unused (in which case
// the array will be one longer than indicated by the count of unwind codes
// field).
if (numCodes & 1) {
streamer.emitInt16(0);
}
if (flags & (Win64EH::UNW_ChainInfo << 3))
EmitRuntimeFunction(streamer, info->ChainedParent);
else if (flags &
((Win64EH::UNW_TerminateHandler|Win64EH::UNW_ExceptionHandler) << 3))
streamer.emitValue(MCSymbolRefExpr::create(info->ExceptionHandler,
MCSymbolRefExpr::VK_COFF_IMGREL32,
context), 4);
else if (numCodes == 0) {
// The minimum size of an UNWIND_INFO struct is 8 bytes. If we're not
// a chained unwind info, if there is no handler, and if there are fewer
// than 2 slots used in the unwind code array, we have to pad to 8 bytes.
streamer.emitInt32(0);
}
}
void llvm::Win64EH::UnwindEmitter::Emit(MCStreamer &Streamer) const {
// Emit the unwind info structs first.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection);
Streamer.SwitchSection(XData);
::EmitUnwindInfo(Streamer, CFI.get());
}
// Now emit RUNTIME_FUNCTION entries.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection);
Streamer.SwitchSection(PData);
EmitRuntimeFunction(Streamer, CFI.get());
}
}
void llvm::Win64EH::UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
WinEH::FrameInfo *info,
bool HandlerData) const {
// Switch sections (the static function above is meant to be called from
// here and from Emit().
MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection);
Streamer.SwitchSection(XData);
::EmitUnwindInfo(Streamer, info);
}
static int64_t GetAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS,
const MCSymbol *RHS) {
MCContext &Context = Streamer.getContext();
const MCExpr *Diff =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context),
MCSymbolRefExpr::create(RHS, Context), Context);
MCObjectStreamer *OS = (MCObjectStreamer *)(&Streamer);
// It should normally be possible to calculate the length of a function
// at this point, but it might not be possible in the presence of certain
// unusual constructs, like an inline asm with an alignment directive.
int64_t value;
if (!Diff->evaluateAsAbsolute(value, OS->getAssembler()))
report_fatal_error("Failed to evaluate function length in SEH unwind info");
return value;
}
static uint32_t ARM64CountOfUnwindCodes(ArrayRef<WinEH::Instruction> Insns) {
uint32_t Count = 0;
for (const auto &I : Insns) {
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
default:
llvm_unreachable("Unsupported ARM64 unwind code");
case Win64EH::UOP_AllocSmall:
Count += 1;
break;
case Win64EH::UOP_AllocMedium:
Count += 2;
break;
case Win64EH::UOP_AllocLarge:
Count += 4;
break;
case Win64EH::UOP_SaveR19R20X:
Count += 1;
break;
case Win64EH::UOP_SaveFPLRX:
Count += 1;
break;
case Win64EH::UOP_SaveFPLR:
Count += 1;
break;
case Win64EH::UOP_SaveReg:
Count += 2;
break;
case Win64EH::UOP_SaveRegP:
Count += 2;
break;
case Win64EH::UOP_SaveRegPX:
Count += 2;
break;
case Win64EH::UOP_SaveRegX:
Count += 2;
break;
case Win64EH::UOP_SaveLRPair:
Count += 2;
break;
case Win64EH::UOP_SaveFReg:
Count += 2;
break;
case Win64EH::UOP_SaveFRegP:
Count += 2;
break;
case Win64EH::UOP_SaveFRegX:
Count += 2;
break;
case Win64EH::UOP_SaveFRegPX:
Count += 2;
break;
case Win64EH::UOP_SetFP:
Count += 1;
break;
case Win64EH::UOP_AddFP:
Count += 2;
break;
case Win64EH::UOP_Nop:
Count += 1;
break;
case Win64EH::UOP_End:
Count += 1;
break;
case Win64EH::UOP_SaveNext:
Count += 1;
break;
case Win64EH::UOP_TrapFrame:
Count += 1;
break;
case Win64EH::UOP_PushMachFrame:
Count += 1;
break;
case Win64EH::UOP_Context:
Count += 1;
break;
case Win64EH::UOP_ClearUnwoundToCall:
Count += 1;
break;
}
}
return Count;
}
// Unwind opcode encodings and restrictions are documented at
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
static void ARM64EmitUnwindCode(MCStreamer &streamer, const MCSymbol *begin,
WinEH::Instruction &inst) {
uint8_t b, reg;
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
default:
llvm_unreachable("Unsupported ARM64 unwind code");
case Win64EH::UOP_AllocSmall:
b = (inst.Offset >> 4) & 0x1F;
streamer.emitInt8(b);
break;
case Win64EH::UOP_AllocMedium: {
uint16_t hw = (inst.Offset >> 4) & 0x7FF;
b = 0xC0;
b |= (hw >> 8);
streamer.emitInt8(b);
b = hw & 0xFF;
streamer.emitInt8(b);
break;
}
case Win64EH::UOP_AllocLarge: {
uint32_t w;
b = 0xE0;
streamer.emitInt8(b);
w = inst.Offset >> 4;
b = (w & 0x00FF0000) >> 16;
streamer.emitInt8(b);
b = (w & 0x0000FF00) >> 8;
streamer.emitInt8(b);
b = w & 0x000000FF;
streamer.emitInt8(b);
break;
}
case Win64EH::UOP_SetFP:
b = 0xE1;
streamer.emitInt8(b);
break;
case Win64EH::UOP_AddFP:
b = 0xE2;
streamer.emitInt8(b);
b = (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_Nop:
b = 0xE3;
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveR19R20X:
b = 0x20;
b |= (inst.Offset >> 3) & 0x1F;
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFPLRX:
b = 0x80;
b |= ((inst.Offset - 1) >> 3) & 0x3F;
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFPLR:
b = 0x40;
b |= (inst.Offset >> 3) & 0x3F;
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveReg:
assert(inst.Register >= 19 && "Saved reg must be >= 19");
reg = inst.Register - 19;
b = 0xD0 | ((reg & 0xC) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveRegX:
assert(inst.Register >= 19 && "Saved reg must be >= 19");
reg = inst.Register - 19;
b = 0xD4 | ((reg & 0x8) >> 3);
streamer.emitInt8(b);
b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveRegP:
assert(inst.Register >= 19 && "Saved registers must be >= 19");
reg = inst.Register - 19;
b = 0xC8 | ((reg & 0xC) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveRegPX:
assert(inst.Register >= 19 && "Saved registers must be >= 19");
reg = inst.Register - 19;
b = 0xCC | ((reg & 0xC) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveLRPair:
assert(inst.Register >= 19 && "Saved reg must be >= 19");
reg = inst.Register - 19;
assert((reg % 2) == 0 && "Saved reg must be 19+2*X");
reg /= 2;
b = 0xD6 | ((reg & 0x7) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFReg:
assert(inst.Register >= 8 && "Saved dreg must be >= 8");
reg = inst.Register - 8;
b = 0xDC | ((reg & 0x4) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFRegX:
assert(inst.Register >= 8 && "Saved dreg must be >= 8");
reg = inst.Register - 8;
b = 0xDE;
streamer.emitInt8(b);
b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFRegP:
assert(inst.Register >= 8 && "Saved dregs must be >= 8");
reg = inst.Register - 8;
b = 0xD8 | ((reg & 0x4) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveFRegPX:
assert(inst.Register >= 8 && "Saved dregs must be >= 8");
reg = inst.Register - 8;
b = 0xDA | ((reg & 0x4) >> 2);
streamer.emitInt8(b);
b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1);
streamer.emitInt8(b);
break;
case Win64EH::UOP_End:
b = 0xE4;
streamer.emitInt8(b);
break;
case Win64EH::UOP_SaveNext:
b = 0xE6;
streamer.emitInt8(b);
break;
case Win64EH::UOP_TrapFrame:
b = 0xE8;
streamer.emitInt8(b);
break;
case Win64EH::UOP_PushMachFrame:
b = 0xE9;
streamer.emitInt8(b);
break;
case Win64EH::UOP_Context:
b = 0xEA;
streamer.emitInt8(b);
break;
case Win64EH::UOP_ClearUnwoundToCall:
b = 0xEC;
streamer.emitInt8(b);
break;
}
}
// Returns the epilog symbol of an epilog with the exact same unwind code
// sequence, if it exists. Otherwise, returns nulltpr.
// EpilogInstrs - Unwind codes for the current epilog.
// Epilogs - Epilogs that potentialy match the current epilog.
static MCSymbol*
FindMatchingEpilog(const std::vector<WinEH::Instruction>& EpilogInstrs,
const std::vector<MCSymbol *>& Epilogs,
const WinEH::FrameInfo *info) {
for (auto *EpilogStart : Epilogs) {
auto InstrsIter = info->EpilogMap.find(EpilogStart);
assert(InstrsIter != info->EpilogMap.end() &&
"Epilog not found in EpilogMap");
const auto &Instrs = InstrsIter->second;
if (Instrs.size() != EpilogInstrs.size())
continue;
bool Match = true;
for (unsigned i = 0; i < Instrs.size(); ++i)
if (Instrs[i].Operation != EpilogInstrs[i].Operation ||
Instrs[i].Offset != EpilogInstrs[i].Offset ||
Instrs[i].Register != EpilogInstrs[i].Register) {
Match = false;
break;
}
if (Match)
return EpilogStart;
}
return nullptr;
}
static void simplifyOpcodes(std::vector<WinEH::Instruction> &Instructions,
bool Reverse) {
unsigned PrevOffset = -1;
unsigned PrevRegister = -1;
auto VisitInstruction = [&](WinEH::Instruction &Inst) {
// Convert 2-byte opcodes into equivalent 1-byte ones.
if (Inst.Operation == Win64EH::UOP_SaveRegP && Inst.Register == 29) {
Inst.Operation = Win64EH::UOP_SaveFPLR;
Inst.Register = -1;
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX &&
Inst.Register == 29) {
Inst.Operation = Win64EH::UOP_SaveFPLRX;
Inst.Register = -1;
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX &&
Inst.Register == 19 && Inst.Offset <= 248) {
Inst.Operation = Win64EH::UOP_SaveR19R20X;
Inst.Register = -1;
} else if (Inst.Operation == Win64EH::UOP_AddFP && Inst.Offset == 0) {
Inst.Operation = Win64EH::UOP_SetFP;
} else if (Inst.Operation == Win64EH::UOP_SaveRegP &&
Inst.Register == PrevRegister + 2 &&
Inst.Offset == PrevOffset + 16) {
Inst.Operation = Win64EH::UOP_SaveNext;
Inst.Register = -1;
Inst.Offset = 0;
// Intentionally not creating UOP_SaveNext for float register pairs,
// as current versions of Windows (up to at least 20.04) is buggy
// regarding SaveNext for float pairs.
}
// Update info about the previous instruction, for detecting if
// the next one can be made a UOP_SaveNext
if (Inst.Operation == Win64EH::UOP_SaveR19R20X) {
PrevOffset = 0;
PrevRegister = 19;
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX) {
PrevOffset = 0;
PrevRegister = Inst.Register;
} else if (Inst.Operation == Win64EH::UOP_SaveRegP) {
PrevOffset = Inst.Offset;
PrevRegister = Inst.Register;
} else if (Inst.Operation == Win64EH::UOP_SaveNext) {
PrevRegister += 2;
PrevOffset += 16;
} else {
PrevRegister = -1;
PrevOffset = -1;
}
};
// Iterate over instructions in a forward order (for prologues),
// backwards for epilogues (i.e. always reverse compared to how the
// opcodes are stored).
if (Reverse) {
for (auto It = Instructions.rbegin(); It != Instructions.rend(); It++)
VisitInstruction(*It);
} else {
for (WinEH::Instruction &Inst : Instructions)
VisitInstruction(Inst);
}
}
static int checkPackedEpilog(MCStreamer &streamer, WinEH::FrameInfo *info,
int PrologCodeBytes) {
// Can only pack if there's one single epilog
if (info->EpilogMap.size() != 1)
return -1;
const std::vector<WinEH::Instruction> &Epilog =
info->EpilogMap.begin()->second;
// Can pack if the epilog is a subset of the prolog but not vice versa
if (Epilog.size() > info->Instructions.size())
return -1;
// Check that the epilog actually is a perfect match for the end (backwrds)
// of the prolog.
for (int I = Epilog.size() - 1; I >= 0; I--) {
if (info->Instructions[I] != Epilog[Epilog.size() - 1 - I])
return -1;
}
// Check that the epilog actually is at the very end of the function,
// otherwise it can't be packed.
uint32_t DistanceFromEnd = (uint32_t)GetAbsDifference(
streamer, info->FuncletOrFuncEnd, info->EpilogMap.begin()->first);
if (DistanceFromEnd / 4 != Epilog.size())
return -1;
int Offset = Epilog.size() == info->Instructions.size()
? 0
: ARM64CountOfUnwindCodes(ArrayRef<WinEH::Instruction>(
&info->Instructions[Epilog.size()],
info->Instructions.size() - Epilog.size()));
// Check that the offset and prolog size fits in the first word; it's
// unclear whether the epilog count in the extension word can be taken
// as packed epilog offset.
if (Offset > 31 || PrologCodeBytes > 124)
return -1;
info->EpilogMap.clear();
return Offset;
}
static bool tryPackedUnwind(WinEH::FrameInfo *info, uint32_t FuncLength,
int PackedEpilogOffset) {
if (PackedEpilogOffset == 0) {
// Fully symmetric prolog and epilog, should be ok for packed format.
// For CR=3, the corresponding synthesized epilog actually lacks the
// SetFP opcode, but unwinding should work just fine despite that
// (if at the SetFP opcode, the unwinder considers it as part of the
// function body and just unwinds the full prolog instead).
} else if (PackedEpilogOffset == 1) {
// One single case of differences between prolog and epilog is allowed:
// The epilog can lack a single SetFP that is the last opcode in the
// prolog, for the CR=3 case.
if (info->Instructions.back().Operation != Win64EH::UOP_SetFP)
return false;
} else {
// Too much difference between prolog and epilog.
return false;
}
unsigned RegI = 0, RegF = 0;
int Predecrement = 0;
enum {
Start,
Start2,
IntRegs,
FloatRegs,
InputArgs,
StackAdjust,
FrameRecord,
End
} Location = Start;
bool StandaloneLR = false, FPLRPair = false;
int StackOffset = 0;
int Nops = 0;
// Iterate over the prolog and check that all opcodes exactly match
// the canonical order and form. A more lax check could verify that
// all saved registers are in the expected locations, but not enforce
// the order - that would work fine when unwinding from within
// functions, but not be exactly right if unwinding happens within
// prologs/epilogs.
for (const WinEH::Instruction &Inst : info->Instructions) {
switch (Inst.Operation) {
case Win64EH::UOP_End:
if (Location != Start)
return false;
Location = Start2;
break;
case Win64EH::UOP_SaveR19R20X:
if (Location != Start2)
return false;
Predecrement = Inst.Offset;
RegI = 2;
Location = IntRegs;
break;
case Win64EH::UOP_SaveRegX:
if (Location != Start2)
return false;
Predecrement = Inst.Offset;
if (Inst.Register == 19)
RegI += 1;
else if (Inst.Register == 30)
StandaloneLR = true;
else
return false;
// Odd register; can't be any further int registers.
Location = FloatRegs;
break;
case Win64EH::UOP_SaveRegPX:
// Can't have this in a canonical prologue. Either this has been
// canonicalized into SaveR19R20X or SaveFPLRX, or it's an unsupported
// register pair.
// It can't be canonicalized into SaveR19R20X if the offset is
// larger than 248 bytes, but even with the maximum case with
// RegI=10/RegF=8/CR=1/H=1, we end up with SavSZ = 216, which should
// fit into SaveR19R20X.
// The unwinding opcodes can't describe the otherwise seemingly valid
// case for RegI=1 CR=1, that would start with a
// "stp x19, lr, [sp, #-...]!" as that fits neither SaveRegPX nor
// SaveLRPair.
return false;
case Win64EH::UOP_SaveRegP:
if (Location != IntRegs || Inst.Offset != 8 * RegI ||
Inst.Register != 19 + RegI)
return false;
RegI += 2;
break;
case Win64EH::UOP_SaveReg:
if (Location != IntRegs || Inst.Offset != 8 * RegI)
return false;
if (Inst.Register == 19 + RegI)
RegI += 1;
else if (Inst.Register == 30)
StandaloneLR = true;
else
return false;
// Odd register; can't be any further int registers.
Location = FloatRegs;
break;
case Win64EH::UOP_SaveLRPair:
if (Location != IntRegs || Inst.Offset != 8 * RegI ||
Inst.Register != 19 + RegI)
return false;
RegI += 1;
StandaloneLR = true;
Location = FloatRegs;
break;
case Win64EH::UOP_SaveFRegX:
// Packed unwind can't handle prologs that only save one single
// float register.
return false;
case Win64EH::UOP_SaveFReg:
if (Location != FloatRegs || RegF == 0 || Inst.Register != 8 + RegF ||
Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF))
return false;
RegF += 1;
Location = InputArgs;
break;
case Win64EH::UOP_SaveFRegPX:
if (Location != Start2 || Inst.Register != 8)
return false;
Predecrement = Inst.Offset;
RegF = 2;
Location = FloatRegs;
break;
case Win64EH::UOP_SaveFRegP:
if ((Location != IntRegs && Location != FloatRegs) ||
Inst.Register != 8 + RegF ||
Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF))
return false;
RegF += 2;
Location = FloatRegs;
break;
case Win64EH::UOP_SaveNext:
if (Location == IntRegs)
RegI += 2;
else if (Location == FloatRegs)
RegF += 2;
else
return false;
break;
case Win64EH::UOP_Nop:
if (Location != IntRegs && Location != FloatRegs && Location != InputArgs)
return false;
Location = InputArgs;
Nops++;
break;
case Win64EH::UOP_AllocSmall:
case Win64EH::UOP_AllocMedium:
if (Location != Start2 && Location != IntRegs && Location != FloatRegs &&
Location != InputArgs && Location != StackAdjust)
return false;
// Can have either a single decrement, or a pair of decrements with
// 4080 and another decrement.
if (StackOffset == 0)
StackOffset = Inst.Offset;
else if (StackOffset != 4080)
return false;
else
StackOffset += Inst.Offset;
Location = StackAdjust;
break;
case Win64EH::UOP_SaveFPLRX:
// Not allowing FPLRX after StackAdjust; if a StackAdjust is used, it
// should be followed by a FPLR instead.
if (Location != Start2 && Location != IntRegs && Location != FloatRegs &&
Location != InputArgs)
return false;
StackOffset = Inst.Offset;
Location = FrameRecord;
FPLRPair = true;
break;
case Win64EH::UOP_SaveFPLR:
// This can only follow after a StackAdjust
if (Location != StackAdjust || Inst.Offset != 0)
return false;
Location = FrameRecord;
FPLRPair = true;
break;
case Win64EH::UOP_SetFP:
if (Location != FrameRecord)
return false;
Location = End;
break;
}
}
if (RegI > 10 || RegF > 8)
return false;
if (StandaloneLR && FPLRPair)
return false;
if (FPLRPair && Location != End)
return false;
if (Nops != 0 && Nops != 4)
return false;
int H = Nops == 4;
int IntSZ = 8 * RegI;
if (StandaloneLR)
IntSZ += 8;
int FpSZ = 8 * RegF; // RegF not yet decremented
int SavSZ = (IntSZ + FpSZ + 8 * 8 * H + 0xF) & ~0xF;
if (Predecrement != SavSZ)
return false;
if (FPLRPair && StackOffset < 16)
return false;
if (StackOffset % 16)
return false;
uint32_t FrameSize = (StackOffset + SavSZ) / 16;
if (FrameSize > 0x1FF)
return false;
assert(RegF != 1 && "One single float reg not allowed");
if (RegF > 0)
RegF--; // Convert from actual number of registers, to value stored
assert(FuncLength <= 0x7FF && "FuncLength should have been checked earlier");
int Flag = 0x01; // Function segments not supported yet
int CR = FPLRPair ? 3 : StandaloneLR ? 1 : 0;
info->PackedInfo |= Flag << 0;
info->PackedInfo |= (FuncLength & 0x7FF) << 2;
info->PackedInfo |= (RegF & 0x7) << 13;
info->PackedInfo |= (RegI & 0xF) << 16;
info->PackedInfo |= (H & 0x1) << 20;
info->PackedInfo |= (CR & 0x3) << 21;
info->PackedInfo |= (FrameSize & 0x1FF) << 23;
return true;
}
// Populate the .xdata section. The format of .xdata on ARM64 is documented at
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
static void ARM64EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info,
bool TryPacked = true) {
// If this UNWIND_INFO already has a symbol, it's already been emitted.
if (info->Symbol)
return;
// If there's no unwind info here (not even a terminating UOP_End), the
// unwind info is considered bogus and skipped. If this was done in
// response to an explicit .seh_handlerdata, the associated trailing
// handler data is left orphaned in the xdata section.
if (info->empty()) {
info->EmitAttempted = true;
return;
}
if (info->EmitAttempted) {
// If we tried to emit unwind info before (due to an explicit
// .seh_handlerdata directive), but skipped it (because there was no
// valid information to emit at the time), and it later got valid unwind
// opcodes, we can't emit it here, because the trailing handler data
// was already emitted elsewhere in the xdata section.
streamer.getContext().reportError(
SMLoc(), "Earlier .seh_handlerdata for " + info->Function->getName() +
" skipped due to no unwind info at the time "
"(.seh_handlerdata too early?), but the function later "
"did get unwind info that can't be emitted");
return;
}
simplifyOpcodes(info->Instructions, false);
for (auto &I : info->EpilogMap)
simplifyOpcodes(I.second, true);
MCContext &context = streamer.getContext();
MCSymbol *Label = context.createTempSymbol();
streamer.emitValueToAlignment(4);
streamer.emitLabel(Label);
info->Symbol = Label;
int64_t RawFuncLength;
if (!info->FuncletOrFuncEnd) {
report_fatal_error("FuncletOrFuncEnd not set");
} else {
// FIXME: GetAbsDifference tries to compute the length of the function
// immediately, before the whole file is emitted, but in general
// that's impossible: the size in bytes of certain assembler directives
// like .align and .fill is not known until the whole file is parsed and
// relaxations are applied. Currently, GetAbsDifference fails with a fatal
// error in that case. (We mostly don't hit this because inline assembly
// specifying those directives is rare, and we don't normally try to
// align loops on AArch64.)
//
// There are two potential approaches to delaying the computation. One,
// we could emit something like ".word (endfunc-beginfunc)/4+0x10800000",
// as long as we have some conservative estimate we could use to prove
// that we don't need to split the unwind data. Emitting the constant
// is straightforward, but there's no existing code for estimating the
// size of the function.
//
// The other approach would be to use a dedicated, relaxable fragment,
// which could grow to accommodate splitting the unwind data if
// necessary. This is more straightforward, since it automatically works
// without any new infrastructure, and it's consistent with how we handle
// relaxation in other contexts. But it would require some refactoring
// to move parts of the pdata/xdata emission into the implementation of
// a fragment. We could probably continue to encode the unwind codes
// here, but we'd have to emit the pdata, the xdata header, and the
// epilogue scopes later, since they depend on whether the we need to
// split the unwind data.
RawFuncLength = GetAbsDifference(streamer, info->FuncletOrFuncEnd,
info->Begin);
}
if (RawFuncLength > 0xFFFFF)
report_fatal_error("SEH unwind data splitting not yet implemented");
uint32_t FuncLength = (uint32_t)RawFuncLength / 4;
uint32_t PrologCodeBytes = ARM64CountOfUnwindCodes(info->Instructions);
uint32_t TotalCodeBytes = PrologCodeBytes;
int PackedEpilogOffset = checkPackedEpilog(streamer, info, PrologCodeBytes);
if (PackedEpilogOffset >= 0 && !info->HandlesExceptions &&
FuncLength <= 0x7ff && TryPacked) {
// Matching prolog/epilog and no exception handlers; check if the
// prolog matches the patterns that can be described by the packed
// format.
// info->Symbol was already set even if we didn't actually write any
// unwind info there. Keep using that as indicator that this unwind
// info has been generated already.
if (tryPackedUnwind(info, FuncLength, PackedEpilogOffset))
return;
}
// Process epilogs.
MapVector<MCSymbol *, uint32_t> EpilogInfo;
// Epilogs processed so far.
std::vector<MCSymbol *> AddedEpilogs;
for (auto &I : info->EpilogMap) {
MCSymbol *EpilogStart = I.first;
auto &EpilogInstrs = I.second;
uint32_t CodeBytes = ARM64CountOfUnwindCodes(EpilogInstrs);
MCSymbol* MatchingEpilog =
FindMatchingEpilog(EpilogInstrs, AddedEpilogs, info);
if (MatchingEpilog) {
assert(EpilogInfo.find(MatchingEpilog) != EpilogInfo.end() &&
"Duplicate epilog not found");
EpilogInfo[EpilogStart] = EpilogInfo.lookup(MatchingEpilog);
// Clear the unwind codes in the EpilogMap, so that they don't get output
// in the logic below.
EpilogInstrs.clear();
} else {
EpilogInfo[EpilogStart] = TotalCodeBytes;
TotalCodeBytes += CodeBytes;
AddedEpilogs.push_back(EpilogStart);
}
}
// Code Words, Epilog count, E, X, Vers, Function Length
uint32_t row1 = 0x0;
uint32_t CodeWords = TotalCodeBytes / 4;
uint32_t CodeWordsMod = TotalCodeBytes % 4;
if (CodeWordsMod)
CodeWords++;
uint32_t EpilogCount =
PackedEpilogOffset >= 0 ? PackedEpilogOffset : info->EpilogMap.size();
bool ExtensionWord = EpilogCount > 31 || TotalCodeBytes > 124;
if (!ExtensionWord) {
row1 |= (EpilogCount & 0x1F) << 22;
row1 |= (CodeWords & 0x1F) << 27;
}
if (info->HandlesExceptions) // X
row1 |= 1 << 20;
if (PackedEpilogOffset >= 0) // E
row1 |= 1 << 21;
row1 |= FuncLength & 0x3FFFF;
streamer.emitInt32(row1);
// Extended Code Words, Extended Epilog Count
if (ExtensionWord) {
// FIXME: We should be able to split unwind info into multiple sections.
// FIXME: We should share epilog codes across epilogs, where possible,
// which would make this issue show up less frequently.
if (CodeWords > 0xFF || EpilogCount > 0xFFFF)
report_fatal_error("SEH unwind data splitting not yet implemented");
uint32_t row2 = 0x0;
row2 |= (CodeWords & 0xFF) << 16;
row2 |= (EpilogCount & 0xFFFF);
streamer.emitInt32(row2);
}
// Epilog Start Index, Epilog Start Offset
for (auto &I : EpilogInfo) {
MCSymbol *EpilogStart = I.first;
uint32_t EpilogIndex = I.second;
uint32_t EpilogOffset =
(uint32_t)GetAbsDifference(streamer, EpilogStart, info->Begin);
if (EpilogOffset)
EpilogOffset /= 4;
uint32_t row3 = EpilogOffset;
row3 |= (EpilogIndex & 0x3FF) << 22;
streamer.emitInt32(row3);
}
// Emit prolog unwind instructions (in reverse order).
uint8_t numInst = info->Instructions.size();
for (uint8_t c = 0; c < numInst; ++c) {
WinEH::Instruction inst = info->Instructions.back();
info->Instructions.pop_back();
ARM64EmitUnwindCode(streamer, info->Begin, inst);
}
// Emit epilog unwind instructions
for (auto &I : info->EpilogMap) {
auto &EpilogInstrs = I.second;
for (uint32_t i = 0; i < EpilogInstrs.size(); i++) {
WinEH::Instruction inst = EpilogInstrs[i];
ARM64EmitUnwindCode(streamer, info->Begin, inst);
}
}
int32_t BytesMod = CodeWords * 4 - TotalCodeBytes;
assert(BytesMod >= 0);
for (int i = 0; i < BytesMod; i++)
streamer.emitInt8(0xE3);
if (info->HandlesExceptions)
streamer.emitValue(
MCSymbolRefExpr::create(info->ExceptionHandler,
MCSymbolRefExpr::VK_COFF_IMGREL32, context),
4);
}
static void ARM64EmitRuntimeFunction(MCStreamer &streamer,
const WinEH::FrameInfo *info) {
MCContext &context = streamer.getContext();
streamer.emitValueToAlignment(4);
EmitSymbolRefWithOfs(streamer, info->Function, info->Begin);
if (info->PackedInfo)
streamer.emitInt32(info->PackedInfo);
else
streamer.emitValue(
MCSymbolRefExpr::create(info->Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32,
context),
4);
}
void llvm::Win64EH::ARM64UnwindEmitter::Emit(MCStreamer &Streamer) const {
// Emit the unwind info structs first.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
WinEH::FrameInfo *Info = CFI.get();
if (Info->empty())
continue;
MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection);
Streamer.SwitchSection(XData);
ARM64EmitUnwindInfo(Streamer, Info);
}
// Now emit RUNTIME_FUNCTION entries.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
WinEH::FrameInfo *Info = CFI.get();
// ARM64EmitUnwindInfo above clears the info struct, so we can't check
// empty here. But if a Symbol is set, we should create the corresponding
// pdata entry.
if (!Info->Symbol)
continue;
MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection);
Streamer.SwitchSection(PData);
ARM64EmitRuntimeFunction(Streamer, Info);
}
}
void llvm::Win64EH::ARM64UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
WinEH::FrameInfo *info,
bool HandlerData) const {
// Called if there's an .seh_handlerdata directive before the end of the
// function. This forces writing the xdata record already here - and
// in this case, the function isn't actually ended already, but the xdata
// record needs to know the function length. In these cases, if the funclet
// end hasn't been marked yet, the xdata function length won't cover the
// whole function, only up to this point.
if (!info->FuncletOrFuncEnd) {
Streamer.SwitchSection(info->TextSection);
info->FuncletOrFuncEnd = Streamer.emitCFILabel();
}
// Switch sections (the static function above is meant to be called from
// here and from Emit().
MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection);
Streamer.SwitchSection(XData);
ARM64EmitUnwindInfo(Streamer, info, /* TryPacked = */ !HandlerData);
}