1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/include/llvm/Target/TargetMachine.h
Zarko Todorovski d5cb6187da [PPC][AIX] Add vector callee saved registers for AIX extended vector ABI
This patch is the initial patch for support of the AIX extended vector ABI.  The extended ABI treats vector registers V20-V31 as non-volatile and we add them as callee saved registers in this patch.

Reviewed By: sfertile

Differential Revision: https://reviews.llvm.org/D88676
2020-11-24 23:01:51 -05:00

450 lines
17 KiB
C++

//===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetMachine and LLVMTargetMachine classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETMACHINE_H
#define LLVM_TARGET_TARGETMACHINE_H
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
namespace llvm {
class Function;
class GlobalValue;
class MachineModuleInfoWrapperPass;
class Mangler;
class MCAsmInfo;
class MCContext;
class MCInstrInfo;
class MCRegisterInfo;
class MCSubtargetInfo;
class MCSymbol;
class raw_pwrite_stream;
class PassBuilder;
class PassManagerBuilder;
struct PerFunctionMIParsingState;
class SMDiagnostic;
class SMRange;
class Target;
class TargetIntrinsicInfo;
class TargetIRAnalysis;
class TargetTransformInfo;
class TargetLoweringObjectFile;
class TargetPassConfig;
class TargetSubtargetInfo;
// The old pass manager infrastructure is hidden in a legacy namespace now.
namespace legacy {
class PassManagerBase;
}
using legacy::PassManagerBase;
namespace yaml {
struct MachineFunctionInfo;
}
//===----------------------------------------------------------------------===//
///
/// Primary interface to the complete machine description for the target
/// machine. All target-specific information should be accessible through this
/// interface.
///
class TargetMachine {
protected: // Can only create subclasses.
TargetMachine(const Target &T, StringRef DataLayoutString,
const Triple &TargetTriple, StringRef CPU, StringRef FS,
const TargetOptions &Options);
/// The Target that this machine was created for.
const Target &TheTarget;
/// DataLayout for the target: keep ABI type size and alignment.
///
/// The DataLayout is created based on the string representation provided
/// during construction. It is kept here only to avoid reparsing the string
/// but should not really be used during compilation, because it has an
/// internal cache that is context specific.
const DataLayout DL;
/// Triple string, CPU name, and target feature strings the TargetMachine
/// instance is created with.
Triple TargetTriple;
std::string TargetCPU;
std::string TargetFS;
Reloc::Model RM = Reloc::Static;
CodeModel::Model CMModel = CodeModel::Small;
CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
/// Contains target specific asm information.
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<const MCSubtargetInfo> STI;
unsigned RequireStructuredCFG : 1;
unsigned O0WantsFastISel : 1;
public:
const TargetOptions DefaultOptions;
mutable TargetOptions Options;
TargetMachine(const TargetMachine &) = delete;
void operator=(const TargetMachine &) = delete;
virtual ~TargetMachine();
const Target &getTarget() const { return TheTarget; }
const Triple &getTargetTriple() const { return TargetTriple; }
StringRef getTargetCPU() const { return TargetCPU; }
StringRef getTargetFeatureString() const { return TargetFS; }
void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
/// Virtual method implemented by subclasses that returns a reference to that
/// target's TargetSubtargetInfo-derived member variable.
virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
return nullptr;
}
virtual TargetLoweringObjectFile *getObjFileLowering() const {
return nullptr;
}
/// Allocate and return a default initialized instance of the YAML
/// representation for the MachineFunctionInfo.
virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
return nullptr;
}
/// Allocate and initialize an instance of the YAML representation of the
/// MachineFunctionInfo.
virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction &MF) const {
return nullptr;
}
/// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
PerFunctionMIParsingState &PFS,
SMDiagnostic &Error,
SMRange &SourceRange) const {
return false;
}
/// This method returns a pointer to the specified type of
/// TargetSubtargetInfo. In debug builds, it verifies that the object being
/// returned is of the correct type.
template <typename STC> const STC &getSubtarget(const Function &F) const {
return *static_cast<const STC*>(getSubtargetImpl(F));
}
/// Create a DataLayout.
const DataLayout createDataLayout() const { return DL; }
/// Test if a DataLayout if compatible with the CodeGen for this target.
///
/// The LLVM Module owns a DataLayout that is used for the target independent
/// optimizations and code generation. This hook provides a target specific
/// check on the validity of this DataLayout.
bool isCompatibleDataLayout(const DataLayout &Candidate) const {
return DL == Candidate;
}
/// Get the pointer size for this target.
///
/// This is the only time the DataLayout in the TargetMachine is used.
unsigned getPointerSize(unsigned AS) const {
return DL.getPointerSize(AS);
}
unsigned getPointerSizeInBits(unsigned AS) const {
return DL.getPointerSizeInBits(AS);
}
unsigned getProgramPointerSize() const {
return DL.getPointerSize(DL.getProgramAddressSpace());
}
unsigned getAllocaPointerSize() const {
return DL.getPointerSize(DL.getAllocaAddrSpace());
}
/// Reset the target options based on the function's attributes.
// FIXME: Remove TargetOptions that affect per-function code generation
// from TargetMachine.
void resetTargetOptions(const Function &F) const;
/// Return target specific asm information.
const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
/// If intrinsic information is available, return it. If not, return null.
virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
return nullptr;
}
bool requiresStructuredCFG() const { return RequireStructuredCFG; }
void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
/// Returns the code generation relocation model. The choices are static, PIC,
/// and dynamic-no-pic, and target default.
Reloc::Model getRelocationModel() const;
/// Returns the code model. The choices are small, kernel, medium, large, and
/// target default.
CodeModel::Model getCodeModel() const;
bool isPositionIndependent() const;
bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
/// Returns true if this target uses emulated TLS.
bool useEmulatedTLS() const;
/// Returns the TLS model which should be used for the given global variable.
TLSModel::Model getTLSModel(const GlobalValue *GV) const;
/// Returns the optimization level: None, Less, Default, or Aggressive.
CodeGenOpt::Level getOptLevel() const;
/// Overrides the optimization level.
void setOptLevel(CodeGenOpt::Level Level);
void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
bool getO0WantsFastISel() { return O0WantsFastISel; }
void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
void setGlobalISelAbort(GlobalISelAbortMode Mode) {
Options.GlobalISelAbort = Mode;
}
void setMachineOutliner(bool Enable) {
Options.EnableMachineOutliner = Enable;
}
void setSupportsDefaultOutlining(bool Enable) {
Options.SupportsDefaultOutlining = Enable;
}
void setSupportsDebugEntryValues(bool Enable) {
Options.SupportsDebugEntryValues = Enable;
}
bool getAIXExtendedAltivecABI() const {
return Options.EnableAIXExtendedAltivecABI;
}
bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
/// Return true if unique basic block section names must be generated.
bool getUniqueBasicBlockSectionNames() const {
return Options.UniqueBasicBlockSectionNames;
}
/// Return true if data objects should be emitted into their own section,
/// corresponds to -fdata-sections.
bool getDataSections() const {
return Options.DataSections;
}
/// Return true if functions should be emitted into their own section,
/// corresponding to -ffunction-sections.
bool getFunctionSections() const {
return Options.FunctionSections;
}
/// Return true if visibility attribute should not be emitted in xcoff,
/// corresponding to -mignore-xcoff-visibility.
bool getIgnoreXCOFFVisibility() const {
return Options.IgnoreXCOFFVisibility;
}
/// If basic blocks should be emitted into their own section,
/// corresponding to -fbasic-block-sections.
llvm::BasicBlockSection getBBSectionsType() const {
return Options.BBSections;
}
/// Get the list of functions and basic block ids that need unique sections.
const MemoryBuffer *getBBSectionsFuncListBuf() const {
return Options.BBSectionsFuncListBuf.get();
}
/// Returns true if a cast between SrcAS and DestAS is a noop.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
return false;
}
/// If the specified generic pointer could be assumed as a pointer to a
/// specific address space, return that address space.
///
/// Under offloading programming, the offloading target may be passed with
/// values only prepared on the host side and could assume certain
/// properties.
virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
/// Get a \c TargetIRAnalysis appropriate for the target.
///
/// This is used to construct the new pass manager's target IR analysis pass,
/// set up appropriately for this target machine. Even the old pass manager
/// uses this to answer queries about the IR.
TargetIRAnalysis getTargetIRAnalysis();
/// Return a TargetTransformInfo for a given function.
///
/// The returned TargetTransformInfo is specialized to the subtarget
/// corresponding to \p F.
virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
/// Allow the target to modify the pass manager, e.g. by calling
/// PassManagerBuilder::addExtension.
virtual void adjustPassManager(PassManagerBuilder &) {}
/// Allow the target to modify the pass pipeline with New Pass Manager
/// (similar to adjustPassManager for Legacy Pass manager).
virtual void registerPassBuilderCallbacks(PassBuilder &,
bool DebugPassManager) {}
/// Add passes to the specified pass manager to get the specified file
/// emitted. Typically this will involve several steps of code generation.
/// This method should return true if emission of this file type is not
/// supported, or false on success.
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
/// will be used to set the MachineModuloInfo for this PM.
virtual bool
addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
raw_pwrite_stream *, CodeGenFileType,
bool /*DisableVerify*/ = true,
MachineModuleInfoWrapperPass *MMIWP = nullptr) {
return true;
}
/// Add passes to the specified pass manager to get machine code emitted with
/// the MCJIT. This method returns true if machine code is not supported. It
/// fills the MCContext Ctx pointer which can be used to build custom
/// MCStreamer.
///
virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
raw_pwrite_stream &,
bool /*DisableVerify*/ = true) {
return true;
}
/// True if subtarget inserts the final scheduling pass on its own.
///
/// Branch relaxation, which must happen after block placement, can
/// on some targets (e.g. SystemZ) expose additional post-RA
/// scheduling opportunities.
virtual bool targetSchedulesPostRAScheduling() const { return false; };
void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
MCSymbol *getSymbol(const GlobalValue *GV) const;
/// The integer bit size to use for SjLj based exception handling.
static constexpr unsigned DefaultSjLjDataSize = 32;
virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
};
/// This class describes a target machine that is implemented with the LLVM
/// target-independent code generator.
///
class LLVMTargetMachine : public TargetMachine {
protected: // Can only create subclasses.
LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL);
void initAsmInfo();
public:
/// Get a TargetTransformInfo implementation for the target.
///
/// The TTI returned uses the common code generator to answer queries about
/// the IR.
TargetTransformInfo getTargetTransformInfo(const Function &F) override;
/// Create a pass configuration object to be used by addPassToEmitX methods
/// for generating a pipeline of CodeGen passes.
virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
/// Add passes to the specified pass manager to get the specified file
/// emitted. Typically this will involve several steps of code generation.
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
/// will be used to set the MachineModuloInfo for this PM.
bool
addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
bool DisableVerify = true,
MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
/// Add passes to the specified pass manager to get machine code emitted with
/// the MCJIT. This method returns true if machine code is not supported. It
/// fills the MCContext Ctx pointer which can be used to build custom
/// MCStreamer.
bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
raw_pwrite_stream &Out,
bool DisableVerify = true) override;
/// Returns true if the target is expected to pass all machine verifier
/// checks. This is a stopgap measure to fix targets one by one. We will
/// remove this at some point and always enable the verifier when
/// EXPENSIVE_CHECKS is enabled.
virtual bool isMachineVerifierClean() const { return true; }
/// Adds an AsmPrinter pass to the pipeline that prints assembly or
/// machine code from the MI representation.
bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
MCContext &Context);
/// True if the target uses physical regs (as nearly all targets do). False
/// for stack machines such as WebAssembly and other virtual-register
/// machines. If true, all vregs must be allocated before PEI. If false, then
/// callee-save register spilling and scavenging are not needed or used. If
/// false, implicitly defined registers will still be assumed to be physical
/// registers, except that variadic defs will be allocated vregs.
virtual bool usesPhysRegsForValues() const { return true; }
/// True if the target wants to use interprocedural register allocation by
/// default. The -enable-ipra flag can be used to override this.
virtual bool useIPRA() const {
return false;
}
};
/// Helper method for getting the code model, returning Default if
/// CM does not have a value. The tiny and kernel models will produce
/// an error, so targets that support them or require more complex codemodel
/// selection logic should implement and call their own getEffectiveCodeModel.
inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
CodeModel::Model Default) {
if (CM) {
// By default, targets do not support the tiny and kernel models.
if (*CM == CodeModel::Tiny)
report_fatal_error("Target does not support the tiny CodeModel", false);
if (*CM == CodeModel::Kernel)
report_fatal_error("Target does not support the kernel CodeModel", false);
return *CM;
}
return Default;
}
} // end namespace llvm
#endif // LLVM_TARGET_TARGETMACHINE_H