mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
9c1c467f23
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper Subscribers: jholewinski, arsenm, mzolotukhin, nemanjai, nhaehnle, javed.absar, mcrosier, llvm-commits Differential Revision: https://reviews.llvm.org/D34531 llvm-svn: 306554
1184 lines
45 KiB
C++
1184 lines
45 KiB
C++
//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides a helper that implements much of the TTI interface in
|
|
/// terms of the target-independent code generator and TargetLowering
|
|
/// interfaces.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
|
|
#define LLVM_CODEGEN_BASICTTIIMPL_H
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
namespace llvm {
|
|
|
|
extern cl::opt<unsigned> PartialUnrollingThreshold;
|
|
|
|
/// \brief Base class which can be used to help build a TTI implementation.
|
|
///
|
|
/// This class provides as much implementation of the TTI interface as is
|
|
/// possible using the target independent parts of the code generator.
|
|
///
|
|
/// In order to subclass it, your class must implement a getST() method to
|
|
/// return the subtarget, and a getTLI() method to return the target lowering.
|
|
/// We need these methods implemented in the derived class so that this class
|
|
/// doesn't have to duplicate storage for them.
|
|
template <typename T>
|
|
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
|
|
private:
|
|
typedef TargetTransformInfoImplCRTPBase<T> BaseT;
|
|
typedef TargetTransformInfo TTI;
|
|
|
|
/// Estimate a cost of shuffle as a sequence of extract and insert
|
|
/// operations.
|
|
unsigned getPermuteShuffleOverhead(Type *Ty) {
|
|
assert(Ty->isVectorTy() && "Can only shuffle vectors");
|
|
unsigned Cost = 0;
|
|
// Shuffle cost is equal to the cost of extracting element from its argument
|
|
// plus the cost of inserting them onto the result vector.
|
|
|
|
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
|
|
// index 0 of first vector, index 1 of second vector,index 2 of first
|
|
// vector and finally index 3 of second vector and insert them at index
|
|
// <0,1,2,3> of result vector.
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// \brief Local query method delegates up to T which *must* implement this!
|
|
const TargetSubtargetInfo *getST() const {
|
|
return static_cast<const T *>(this)->getST();
|
|
}
|
|
|
|
/// \brief Local query method delegates up to T which *must* implement this!
|
|
const TargetLoweringBase *getTLI() const {
|
|
return static_cast<const T *>(this)->getTLI();
|
|
}
|
|
|
|
protected:
|
|
explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
|
|
: BaseT(DL) {}
|
|
|
|
using TargetTransformInfoImplBase::DL;
|
|
|
|
public:
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
|
|
unsigned BitWidth, unsigned AddressSpace,
|
|
unsigned Alignment, bool *Fast) const {
|
|
EVT E = EVT::getIntegerVT(Context, BitWidth);
|
|
return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast);
|
|
}
|
|
|
|
bool hasBranchDivergence() { return false; }
|
|
|
|
bool isSourceOfDivergence(const Value *V) { return false; }
|
|
|
|
bool isAlwaysUniform(const Value *V) { return false; }
|
|
|
|
unsigned getFlatAddressSpace() {
|
|
// Return an invalid address space.
|
|
return -1;
|
|
}
|
|
|
|
bool isLegalAddImmediate(int64_t imm) {
|
|
return getTLI()->isLegalAddImmediate(imm);
|
|
}
|
|
|
|
bool isLegalICmpImmediate(int64_t imm) {
|
|
return getTLI()->isLegalICmpImmediate(imm);
|
|
}
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace);
|
|
}
|
|
|
|
bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
|
|
return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
|
|
}
|
|
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
|
|
}
|
|
|
|
bool isFoldableMemAccessOffset(Instruction *I, int64_t Offset) {
|
|
return getTLI()->isFoldableMemAccessOffset(I, Offset);
|
|
}
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) {
|
|
return getTLI()->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool isProfitableToHoist(Instruction *I) {
|
|
return getTLI()->isProfitableToHoist(I);
|
|
}
|
|
|
|
bool isTypeLegal(Type *Ty) {
|
|
EVT VT = getTLI()->getValueType(DL, Ty);
|
|
return getTLI()->isTypeLegal(VT);
|
|
}
|
|
|
|
int getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) {
|
|
return BaseT::getGEPCost(PointeeType, Ptr, Operands);
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) {
|
|
return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) {
|
|
if (IID == Intrinsic::cttz) {
|
|
if (getTLI()->isCheapToSpeculateCttz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
return TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
|
|
if (IID == Intrinsic::ctlz) {
|
|
if (getTLI()->isCheapToSpeculateCtlz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
return TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
|
|
return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
|
|
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JumpTableSize) {
|
|
/// Try to find the estimated number of clusters. Note that the number of
|
|
/// clusters identified in this function could be different from the actural
|
|
/// numbers found in lowering. This function ignore switches that are
|
|
/// lowered with a mix of jump table / bit test / BTree. This function was
|
|
/// initially intended to be used when estimating the cost of switch in
|
|
/// inline cost heuristic, but it's a generic cost model to be used in other
|
|
/// places (e.g., in loop unrolling).
|
|
unsigned N = SI.getNumCases();
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
const DataLayout &DL = this->getDataLayout();
|
|
|
|
JumpTableSize = 0;
|
|
bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
|
|
|
|
// Early exit if both a jump table and bit test are not allowed.
|
|
if (N < 1 || (!IsJTAllowed && DL.getPointerSizeInBits() < N))
|
|
return N;
|
|
|
|
APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
|
|
APInt MinCaseVal = MaxCaseVal;
|
|
for (auto CI : SI.cases()) {
|
|
const APInt &CaseVal = CI.getCaseValue()->getValue();
|
|
if (CaseVal.sgt(MaxCaseVal))
|
|
MaxCaseVal = CaseVal;
|
|
if (CaseVal.slt(MinCaseVal))
|
|
MinCaseVal = CaseVal;
|
|
}
|
|
|
|
// Check if suitable for a bit test
|
|
if (N <= DL.getPointerSizeInBits()) {
|
|
SmallPtrSet<const BasicBlock *, 4> Dests;
|
|
for (auto I : SI.cases())
|
|
Dests.insert(I.getCaseSuccessor());
|
|
|
|
if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
|
|
DL))
|
|
return 1;
|
|
}
|
|
|
|
// Check if suitable for a jump table.
|
|
if (IsJTAllowed) {
|
|
if (N < 2 || N < TLI->getMinimumJumpTableEntries())
|
|
return N;
|
|
uint64_t Range =
|
|
(MaxCaseVal - MinCaseVal).getLimitedValue(UINT64_MAX - 1) + 1;
|
|
// Check whether a range of clusters is dense enough for a jump table
|
|
if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
|
|
JumpTableSize = Range;
|
|
return 1;
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
|
|
unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
|
|
|
|
unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
|
|
|
|
bool shouldBuildLookupTables() {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
|
|
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
|
|
}
|
|
|
|
bool haveFastSqrt(Type *Ty) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
EVT VT = TLI->getValueType(DL, Ty);
|
|
return TLI->isTypeLegal(VT) &&
|
|
TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
|
|
}
|
|
|
|
unsigned getFPOpCost(Type *Ty) {
|
|
// By default, FP instructions are no more expensive since they are
|
|
// implemented in HW. Target specific TTI can override this.
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
|
|
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
switch (Opcode) {
|
|
default: break;
|
|
case Instruction::Trunc: {
|
|
if (TLI->isTruncateFree(OpTy, Ty))
|
|
return TargetTransformInfo::TCC_Free;
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
case Instruction::ZExt: {
|
|
if (TLI->isZExtFree(OpTy, Ty))
|
|
return TargetTransformInfo::TCC_Free;
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
}
|
|
|
|
return BaseT::getOperationCost(Opcode, Ty, OpTy);
|
|
}
|
|
|
|
unsigned getInliningThresholdMultiplier() { return 1; }
|
|
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
// This unrolling functionality is target independent, but to provide some
|
|
// motivation for its intended use, for x86:
|
|
|
|
// According to the Intel 64 and IA-32 Architectures Optimization Reference
|
|
// Manual, Intel Core models and later have a loop stream detector (and
|
|
// associated uop queue) that can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have no more than 4 (8 for Nehalem and later) branches
|
|
// taken, and none of them may be calls.
|
|
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
|
|
|
|
// According to the Software Optimization Guide for AMD Family 15h
|
|
// Processors, models 30h-4fh (Steamroller and later) have a loop predictor
|
|
// and loop buffer which can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have fewer than 16 branches
|
|
// - The loop must have less than 40 uops in all executed loop branches
|
|
|
|
// The number of taken branches in a loop is hard to estimate here, and
|
|
// benchmarking has revealed that it is better not to be conservative when
|
|
// estimating the branch count. As a result, we'll ignore the branch limits
|
|
// until someone finds a case where it matters in practice.
|
|
|
|
unsigned MaxOps;
|
|
const TargetSubtargetInfo *ST = getST();
|
|
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
|
|
MaxOps = PartialUnrollingThreshold;
|
|
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
|
|
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
|
|
else
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls.
|
|
for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
|
|
++I) {
|
|
BasicBlock *BB = *I;
|
|
|
|
for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
|
|
if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
|
|
ImmutableCallSite CS(&*J);
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
if (!static_cast<T *>(this)->isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Enable runtime and partial unrolling up to the specified size.
|
|
// Enable using trip count upper bound to unroll loops.
|
|
UP.Partial = UP.Runtime = UP.UpperBound = true;
|
|
UP.PartialThreshold = MaxOps;
|
|
|
|
// Avoid unrolling when optimizing for size.
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
|
|
// Set number of instructions optimized when "back edge"
|
|
// becomes "fall through" to default value of 2.
|
|
UP.BEInsns = 2;
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const { return 32; }
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
|
|
assert(Ty->isVectorTy() && "Can only scalarize vectors");
|
|
unsigned Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
if (Insert)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate the overhead of scalarizing an instructions unique
|
|
/// non-constant operands. The types of the arguments are ordinarily
|
|
/// scalar, in which case the costs are multiplied with VF.
|
|
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
unsigned VF) {
|
|
unsigned Cost = 0;
|
|
SmallPtrSet<const Value*, 4> UniqueOperands;
|
|
for (const Value *A : Args) {
|
|
if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
|
|
Type *VecTy = nullptr;
|
|
if (A->getType()->isVectorTy()) {
|
|
VecTy = A->getType();
|
|
// If A is a vector operand, VF should be 1 or correspond to A.
|
|
assert ((VF == 1 || VF == VecTy->getVectorNumElements()) &&
|
|
"Vector argument does not match VF");
|
|
}
|
|
else
|
|
VecTy = VectorType::get(A->getType(), VF);
|
|
|
|
Cost += getScalarizationOverhead(VecTy, false, true);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
|
|
assert (VecTy->isVectorTy());
|
|
|
|
unsigned Cost = 0;
|
|
|
|
Cost += getScalarizationOverhead(VecTy, true, false);
|
|
if (!Args.empty())
|
|
Cost += getOperandsScalarizationOverhead(Args,
|
|
VecTy->getVectorNumElements());
|
|
else
|
|
// When no information on arguments is provided, we add the cost
|
|
// associated with one argument as a heuristic.
|
|
Cost += getScalarizationOverhead(VecTy, false, true);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
|
|
|
|
unsigned getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty,
|
|
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
|
|
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
|
|
ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
|
|
// Check if any of the operands are vector operands.
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
|
|
// Assume that floating point arithmetic operations cost twice as much as
|
|
// integer operations.
|
|
unsigned OpCost = (IsFloat ? 2 : 1);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
return LT.first * OpCost;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered, then assume that the code is twice
|
|
// as expensive.
|
|
return LT.first * 2 * OpCost;
|
|
}
|
|
|
|
// Else, assume that we need to scalarize this op.
|
|
// TODO: If one of the types get legalized by splitting, handle this
|
|
// similarly to what getCastInstrCost() does.
|
|
if (Ty->isVectorTy()) {
|
|
unsigned Num = Ty->getVectorNumElements();
|
|
unsigned Cost = static_cast<T *>(this)
|
|
->getArithmeticInstrCost(Opcode, Ty->getScalarType());
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(Ty, Args) + Num * Cost;
|
|
}
|
|
|
|
// We don't know anything about this scalar instruction.
|
|
return OpCost;
|
|
}
|
|
|
|
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) {
|
|
if (Kind == TTI::SK_Alternate || Kind == TTI::SK_PermuteTwoSrc ||
|
|
Kind == TTI::SK_PermuteSingleSrc) {
|
|
return getPermuteShuffleOverhead(Tp);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
const Instruction *I = nullptr) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
|
|
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
|
|
|
|
// Check for NOOP conversions.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Bitcast between types that are legalized to the same type are free.
|
|
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
|
|
return 0;
|
|
}
|
|
|
|
if (Opcode == Instruction::Trunc &&
|
|
TLI->isTruncateFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::ZExt &&
|
|
TLI->isZExtFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::AddrSpaceCast &&
|
|
TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(),
|
|
Dst->getPointerAddressSpace()))
|
|
return 0;
|
|
|
|
// If this is a zext/sext of a load, return 0 if the corresponding
|
|
// extending load exists on target.
|
|
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
|
|
I && isa<LoadInst>(I->getOperand(0))) {
|
|
EVT ExtVT = EVT::getEVT(Dst);
|
|
EVT LoadVT = EVT::getEVT(Src);
|
|
unsigned LType =
|
|
((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
|
|
if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
|
|
return 0;
|
|
}
|
|
|
|
// If the cast is marked as legal (or promote) then assume low cost.
|
|
if (SrcLT.first == DstLT.first &&
|
|
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Handle scalar conversions.
|
|
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
|
|
|
|
// Scalar bitcasts are usually free.
|
|
if (Opcode == Instruction::BitCast)
|
|
return 0;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it costs
|
|
// 1.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Assume that illegal scalar instruction are expensive.
|
|
return 4;
|
|
}
|
|
|
|
// Check vector-to-vector casts.
|
|
if (Dst->isVectorTy() && Src->isVectorTy()) {
|
|
|
|
// If the cast is between same-sized registers, then the check is simple.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Assume that Zext is done using AND.
|
|
if (Opcode == Instruction::ZExt)
|
|
return 1;
|
|
|
|
// Assume that sext is done using SHL and SRA.
|
|
if (Opcode == Instruction::SExt)
|
|
return 2;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it
|
|
// costs
|
|
// 1 and multiply by the type-legalization overhead.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return SrcLT.first * 1;
|
|
}
|
|
|
|
// If we are legalizing by splitting, query the concrete TTI for the cost
|
|
// of casting the original vector twice. We also need to factor int the
|
|
// cost of the split itself. Count that as 1, to be consistent with
|
|
// TLI->getTypeLegalizationCost().
|
|
if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
|
|
TargetLowering::TypeSplitVector) ||
|
|
(TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
|
|
TargetLowering::TypeSplitVector)) {
|
|
Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
|
|
Dst->getVectorNumElements() / 2);
|
|
Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
|
|
Src->getVectorNumElements() / 2);
|
|
T *TTI = static_cast<T *>(this);
|
|
return TTI->getVectorSplitCost() +
|
|
(2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
|
|
}
|
|
|
|
// In other cases where the source or destination are illegal, assume
|
|
// the operation will get scalarized.
|
|
unsigned Num = Dst->getVectorNumElements();
|
|
unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
|
|
Opcode, Dst->getScalarType(), Src->getScalarType(), I);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We already handled vector-to-vector and scalar-to-scalar conversions.
|
|
// This
|
|
// is where we handle bitcast between vectors and scalars. We need to assume
|
|
// that the conversion is scalarized in one way or another.
|
|
if (Opcode == Instruction::BitCast)
|
|
// Illegal bitcasts are done by storing and loading from a stack slot.
|
|
return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
|
|
: 0) +
|
|
(Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
|
|
: 0);
|
|
|
|
llvm_unreachable("Unhandled cast");
|
|
}
|
|
|
|
unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy, unsigned Index) {
|
|
return static_cast<T *>(this)->getVectorInstrCost(
|
|
Instruction::ExtractElement, VecTy, Index) +
|
|
static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
|
|
VecTy->getElementType());
|
|
}
|
|
|
|
unsigned getCFInstrCost(unsigned Opcode) {
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
const Instruction *I) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Selects on vectors are actually vector selects.
|
|
if (ISD == ISD::SELECT) {
|
|
assert(CondTy && "CondTy must exist");
|
|
if (CondTy->isVectorTy())
|
|
ISD = ISD::VSELECT;
|
|
}
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
|
|
!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1. Multiply
|
|
// by the type-legalization overhead.
|
|
return LT.first * 1;
|
|
}
|
|
|
|
// Otherwise, assume that the cast is scalarized.
|
|
// TODO: If one of the types get legalized by splitting, handle this
|
|
// similarly to what getCastInstrCost() does.
|
|
if (ValTy->isVectorTy()) {
|
|
unsigned Num = ValTy->getVectorNumElements();
|
|
if (CondTy)
|
|
CondTy = CondTy->getScalarType();
|
|
unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
|
|
Opcode, ValTy->getScalarType(), CondTy, I);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
|
|
}
|
|
|
|
// Unknown scalar opcode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
std::pair<unsigned, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace, const Instruction *I = nullptr) {
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
|
|
|
|
// Assuming that all loads of legal types cost 1.
|
|
unsigned Cost = LT.first;
|
|
|
|
if (Src->isVectorTy() &&
|
|
Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
|
|
// This is a vector load that legalizes to a larger type than the vector
|
|
// itself. Unless the corresponding extending load or truncating store is
|
|
// legal, then this will scalarize.
|
|
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
|
|
EVT MemVT = getTLI()->getValueType(DL, Src);
|
|
if (Opcode == Instruction::Store)
|
|
LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
|
|
else
|
|
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
|
|
|
|
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
|
|
// This is a vector load/store for some illegal type that is scalarized.
|
|
// We must account for the cost of building or decomposing the vector.
|
|
Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
|
|
Opcode == Instruction::Store);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
VectorType *VT = dyn_cast<VectorType>(VecTy);
|
|
assert(VT && "Expect a vector type for interleaved memory op");
|
|
|
|
unsigned NumElts = VT->getNumElements();
|
|
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
|
|
|
|
unsigned NumSubElts = NumElts / Factor;
|
|
VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
|
|
|
|
// Firstly, the cost of load/store operation.
|
|
unsigned Cost = static_cast<T *>(this)->getMemoryOpCost(
|
|
Opcode, VecTy, Alignment, AddressSpace);
|
|
|
|
// Legalize the vector type, and get the legalized and unlegalized type
|
|
// sizes.
|
|
MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
|
|
unsigned VecTySize =
|
|
static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
|
|
unsigned VecTyLTSize = VecTyLT.getStoreSize();
|
|
|
|
// Return the ceiling of dividing A by B.
|
|
auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
|
|
|
|
// Scale the cost of the memory operation by the fraction of legalized
|
|
// instructions that will actually be used. We shouldn't account for the
|
|
// cost of dead instructions since they will be removed.
|
|
//
|
|
// E.g., An interleaved load of factor 8:
|
|
// %vec = load <16 x i64>, <16 x i64>* %ptr
|
|
// %v0 = shufflevector %vec, undef, <0, 8>
|
|
//
|
|
// If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
|
|
// used (those corresponding to elements [0:1] and [8:9] of the unlegalized
|
|
// type). The other loads are unused.
|
|
//
|
|
// We only scale the cost of loads since interleaved store groups aren't
|
|
// allowed to have gaps.
|
|
if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
|
|
|
|
// The number of loads of a legal type it will take to represent a load
|
|
// of the unlegalized vector type.
|
|
unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
|
|
|
|
// The number of elements of the unlegalized type that correspond to a
|
|
// single legal instruction.
|
|
unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
|
|
|
|
// Determine which legal instructions will be used.
|
|
BitVector UsedInsts(NumLegalInsts, false);
|
|
for (unsigned Index : Indices)
|
|
for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
|
|
UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
|
|
|
|
// Scale the cost of the load by the fraction of legal instructions that
|
|
// will be used.
|
|
Cost *= UsedInsts.count() / NumLegalInsts;
|
|
}
|
|
|
|
// Then plus the cost of interleave operation.
|
|
if (Opcode == Instruction::Load) {
|
|
// The interleave cost is similar to extract sub vectors' elements
|
|
// from the wide vector, and insert them into sub vectors.
|
|
//
|
|
// E.g. An interleaved load of factor 2 (with one member of index 0):
|
|
// %vec = load <8 x i32>, <8 x i32>* %ptr
|
|
// %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
|
|
// The cost is estimated as extract elements at 0, 2, 4, 6 from the
|
|
// <8 x i32> vector and insert them into a <4 x i32> vector.
|
|
|
|
assert(Indices.size() <= Factor &&
|
|
"Interleaved memory op has too many members");
|
|
|
|
for (unsigned Index : Indices) {
|
|
assert(Index < Factor && "Invalid index for interleaved memory op");
|
|
|
|
// Extract elements from loaded vector for each sub vector.
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
Cost += static_cast<T *>(this)->getVectorInstrCost(
|
|
Instruction::ExtractElement, VT, Index + i * Factor);
|
|
}
|
|
|
|
unsigned InsSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
|
|
Instruction::InsertElement, SubVT, i);
|
|
|
|
Cost += Indices.size() * InsSubCost;
|
|
} else {
|
|
// The interleave cost is extract all elements from sub vectors, and
|
|
// insert them into the wide vector.
|
|
//
|
|
// E.g. An interleaved store of factor 2:
|
|
// %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
|
|
// store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
|
|
// The cost is estimated as extract all elements from both <4 x i32>
|
|
// vectors and insert into the <8 x i32> vector.
|
|
|
|
unsigned ExtSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
|
|
Instruction::ExtractElement, SubVT, i);
|
|
Cost += ExtSubCost * Factor;
|
|
|
|
for (unsigned i = 0; i < NumElts; i++)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, VT, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Get intrinsic cost based on arguments.
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Value *> Args, FastMathFlags FMF,
|
|
unsigned VF = 1) {
|
|
unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
|
|
assert ((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
|
|
|
|
switch (IID) {
|
|
default: {
|
|
// Assume that we need to scalarize this intrinsic.
|
|
SmallVector<Type *, 4> Types;
|
|
for (Value *Op : Args) {
|
|
Type *OpTy = Op->getType();
|
|
assert (VF == 1 || !OpTy->isVectorTy());
|
|
Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
|
|
}
|
|
|
|
if (VF > 1 && !RetTy->isVoidTy())
|
|
RetTy = VectorType::get(RetTy, VF);
|
|
|
|
// Compute the scalarization overhead based on Args for a vector
|
|
// intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
|
|
// CostModel will pass a vector RetTy and VF is 1.
|
|
unsigned ScalarizationCost = UINT_MAX;
|
|
if (RetVF > 1 || VF > 1) {
|
|
ScalarizationCost = 0;
|
|
if (!RetTy->isVoidTy())
|
|
ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
|
|
ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
|
|
}
|
|
|
|
return static_cast<T *>(this)->
|
|
getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost);
|
|
}
|
|
case Intrinsic::masked_scatter: {
|
|
assert (VF == 1 && "Can't vectorize types here.");
|
|
Value *Mask = Args[3];
|
|
bool VarMask = !isa<Constant>(Mask);
|
|
unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
|
|
return
|
|
static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store,
|
|
Args[0]->getType(),
|
|
Args[1], VarMask,
|
|
Alignment);
|
|
}
|
|
case Intrinsic::masked_gather: {
|
|
assert (VF == 1 && "Can't vectorize types here.");
|
|
Value *Mask = Args[2];
|
|
bool VarMask = !isa<Constant>(Mask);
|
|
unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
|
|
return
|
|
static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load,
|
|
RetTy, Args[0], VarMask,
|
|
Alignment);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get intrinsic cost based on argument types.
|
|
/// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
|
|
/// arguments and the return value will be computed based on types.
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> Tys, FastMathFlags FMF,
|
|
unsigned ScalarizationCostPassed = UINT_MAX) {
|
|
SmallVector<unsigned, 2> ISDs;
|
|
unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
|
|
switch (IID) {
|
|
default: {
|
|
// Assume that we need to scalarize this intrinsic.
|
|
unsigned ScalarizationCost = ScalarizationCostPassed;
|
|
unsigned ScalarCalls = 1;
|
|
Type *ScalarRetTy = RetTy;
|
|
if (RetTy->isVectorTy()) {
|
|
if (ScalarizationCostPassed == UINT_MAX)
|
|
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
|
|
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
|
|
ScalarRetTy = RetTy->getScalarType();
|
|
}
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (Ty->isVectorTy()) {
|
|
if (ScalarizationCostPassed == UINT_MAX)
|
|
ScalarizationCost += getScalarizationOverhead(Ty, false, true);
|
|
ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
|
|
Ty = Ty->getScalarType();
|
|
}
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
if (ScalarCalls == 1)
|
|
return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
|
|
|
|
unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
|
|
IID, ScalarRetTy, ScalarTys, FMF);
|
|
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
// Look for intrinsics that can be lowered directly or turned into a scalar
|
|
// intrinsic call.
|
|
case Intrinsic::sqrt:
|
|
ISDs.push_back(ISD::FSQRT);
|
|
break;
|
|
case Intrinsic::sin:
|
|
ISDs.push_back(ISD::FSIN);
|
|
break;
|
|
case Intrinsic::cos:
|
|
ISDs.push_back(ISD::FCOS);
|
|
break;
|
|
case Intrinsic::exp:
|
|
ISDs.push_back(ISD::FEXP);
|
|
break;
|
|
case Intrinsic::exp2:
|
|
ISDs.push_back(ISD::FEXP2);
|
|
break;
|
|
case Intrinsic::log:
|
|
ISDs.push_back(ISD::FLOG);
|
|
break;
|
|
case Intrinsic::log10:
|
|
ISDs.push_back(ISD::FLOG10);
|
|
break;
|
|
case Intrinsic::log2:
|
|
ISDs.push_back(ISD::FLOG2);
|
|
break;
|
|
case Intrinsic::fabs:
|
|
ISDs.push_back(ISD::FABS);
|
|
break;
|
|
case Intrinsic::minnum:
|
|
ISDs.push_back(ISD::FMINNUM);
|
|
if (FMF.noNaNs())
|
|
ISDs.push_back(ISD::FMINNAN);
|
|
break;
|
|
case Intrinsic::maxnum:
|
|
ISDs.push_back(ISD::FMAXNUM);
|
|
if (FMF.noNaNs())
|
|
ISDs.push_back(ISD::FMAXNAN);
|
|
break;
|
|
case Intrinsic::copysign:
|
|
ISDs.push_back(ISD::FCOPYSIGN);
|
|
break;
|
|
case Intrinsic::floor:
|
|
ISDs.push_back(ISD::FFLOOR);
|
|
break;
|
|
case Intrinsic::ceil:
|
|
ISDs.push_back(ISD::FCEIL);
|
|
break;
|
|
case Intrinsic::trunc:
|
|
ISDs.push_back(ISD::FTRUNC);
|
|
break;
|
|
case Intrinsic::nearbyint:
|
|
ISDs.push_back(ISD::FNEARBYINT);
|
|
break;
|
|
case Intrinsic::rint:
|
|
ISDs.push_back(ISD::FRINT);
|
|
break;
|
|
case Intrinsic::round:
|
|
ISDs.push_back(ISD::FROUND);
|
|
break;
|
|
case Intrinsic::pow:
|
|
ISDs.push_back(ISD::FPOW);
|
|
break;
|
|
case Intrinsic::fma:
|
|
ISDs.push_back(ISD::FMA);
|
|
break;
|
|
case Intrinsic::fmuladd:
|
|
ISDs.push_back(ISD::FMA);
|
|
break;
|
|
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
return 0;
|
|
case Intrinsic::masked_store:
|
|
return static_cast<T *>(this)
|
|
->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
|
|
case Intrinsic::masked_load:
|
|
return static_cast<T *>(this)
|
|
->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
|
|
case Intrinsic::ctpop:
|
|
ISDs.push_back(ISD::CTPOP);
|
|
// In case of legalization use TCC_Expensive. This is cheaper than a
|
|
// library call but still not a cheap instruction.
|
|
SingleCallCost = TargetTransformInfo::TCC_Expensive;
|
|
break;
|
|
// FIXME: ctlz, cttz, ...
|
|
}
|
|
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
|
|
|
|
SmallVector<unsigned, 2> LegalCost;
|
|
SmallVector<unsigned, 2> CustomCost;
|
|
for (unsigned ISD : ISDs) {
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) {
|
|
return 0;
|
|
}
|
|
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that there is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
LegalCost.push_back(LT.first * 2);
|
|
else
|
|
LegalCost.push_back(LT.first * 1);
|
|
} else if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// that the code is twice as expensive.
|
|
CustomCost.push_back(LT.first * 2);
|
|
}
|
|
}
|
|
|
|
auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
|
|
if (MinLegalCostI != LegalCost.end())
|
|
return *MinLegalCostI;
|
|
|
|
auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end());
|
|
if (MinCustomCostI != CustomCost.end())
|
|
return *MinCustomCostI;
|
|
|
|
// If we can't lower fmuladd into an FMA estimate the cost as a floating
|
|
// point mul followed by an add.
|
|
if (IID == Intrinsic::fmuladd)
|
|
return static_cast<T *>(this)
|
|
->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
|
|
static_cast<T *>(this)
|
|
->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
|
|
|
|
// Else, assume that we need to scalarize this intrinsic. For math builtins
|
|
// this will emit a costly libcall, adding call overhead and spills. Make it
|
|
// very expensive.
|
|
if (RetTy->isVectorTy()) {
|
|
unsigned ScalarizationCost = ((ScalarizationCostPassed != UINT_MAX) ?
|
|
ScalarizationCostPassed : getScalarizationOverhead(RetTy, true, false));
|
|
unsigned ScalarCalls = RetTy->getVectorNumElements();
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (Ty->isVectorTy())
|
|
Ty = Ty->getScalarType();
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
|
|
IID, RetTy->getScalarType(), ScalarTys, FMF);
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
if (Tys[i]->isVectorTy()) {
|
|
if (ScalarizationCostPassed == UINT_MAX)
|
|
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
|
|
ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
|
|
}
|
|
}
|
|
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
|
|
// This is going to be turned into a library call, make it expensive.
|
|
return SingleCallCost;
|
|
}
|
|
|
|
/// \brief Compute a cost of the given call instruction.
|
|
///
|
|
/// Compute the cost of calling function F with return type RetTy and
|
|
/// argument types Tys. F might be nullptr, in this case the cost of an
|
|
/// arbitrary call with the specified signature will be returned.
|
|
/// This is used, for instance, when we estimate call of a vector
|
|
/// counterpart of the given function.
|
|
/// \param F Called function, might be nullptr.
|
|
/// \param RetTy Return value types.
|
|
/// \param Tys Argument types.
|
|
/// \returns The cost of Call instruction.
|
|
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
|
|
return 10;
|
|
}
|
|
|
|
unsigned getNumberOfParts(Type *Tp) {
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
|
|
const SCEV *) {
|
|
return 0;
|
|
}
|
|
|
|
/// Try to calculate arithmetic and shuffle op costs for reduction operations.
|
|
/// We're assuming that reduction operation are performing the following way:
|
|
/// 1. Non-pairwise reduction
|
|
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
|
|
/// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
|
|
/// \----------------v-------------/ \----------v------------/
|
|
/// n/2 elements n/2 elements
|
|
/// %red1 = op <n x t> %val, <n x t> val1
|
|
/// After this operation we have a vector %red1 where only the first n/2
|
|
/// elements are meaningful, the second n/2 elements are undefined and can be
|
|
/// dropped. All other operations are actually working with the vector of
|
|
/// length n/2, not n, though the real vector length is still n.
|
|
/// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
|
|
/// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
|
|
/// \----------------v-------------/ \----------v------------/
|
|
/// n/4 elements 3*n/4 elements
|
|
/// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
|
|
/// length n/2, the resulting vector has length n/4 etc.
|
|
/// 2. Pairwise reduction:
|
|
/// Everything is the same except for an additional shuffle operation which
|
|
/// is used to produce operands for pairwise kind of reductions.
|
|
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
|
|
/// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
|
|
/// \-------------v----------/ \----------v------------/
|
|
/// n/2 elements n/2 elements
|
|
/// %val2 = shufflevector<n x t> %val, <n x t> %undef,
|
|
/// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
|
|
/// \-------------v----------/ \----------v------------/
|
|
/// n/2 elements n/2 elements
|
|
/// %red1 = op <n x t> %val1, <n x t> val2
|
|
/// Again, the operation is performed on <n x t> vector, but the resulting
|
|
/// vector %red1 is <n/2 x t> vector.
|
|
///
|
|
/// The cost model should take into account that the actual length of the
|
|
/// vector is reduced on each iteration.
|
|
unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) {
|
|
assert(Ty->isVectorTy() && "Expect a vector type");
|
|
Type *ScalarTy = Ty->getVectorElementType();
|
|
unsigned NumVecElts = Ty->getVectorNumElements();
|
|
unsigned NumReduxLevels = Log2_32(NumVecElts);
|
|
unsigned ArithCost = 0;
|
|
unsigned ShuffleCost = 0;
|
|
auto *ConcreteTTI = static_cast<T *>(this);
|
|
std::pair<unsigned, MVT> LT =
|
|
ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
|
|
unsigned LongVectorCount = 0;
|
|
unsigned MVTLen =
|
|
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
|
|
while (NumVecElts > MVTLen) {
|
|
NumVecElts /= 2;
|
|
// Assume the pairwise shuffles add a cost.
|
|
ShuffleCost += (IsPairwise + 1) *
|
|
ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
|
|
NumVecElts, Ty);
|
|
ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
|
|
Ty = VectorType::get(ScalarTy, NumVecElts);
|
|
++LongVectorCount;
|
|
}
|
|
// The minimal length of the vector is limited by the real length of vector
|
|
// operations performed on the current platform. That's why several final
|
|
// reduction opertions are perfomed on the vectors with the same
|
|
// architecture-dependent length.
|
|
ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
|
|
ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
|
|
NumVecElts, Ty);
|
|
ArithCost += (NumReduxLevels - LongVectorCount) *
|
|
ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
|
|
return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
|
|
}
|
|
|
|
unsigned getVectorSplitCost() { return 1; }
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// \brief Concrete BasicTTIImpl that can be used if no further customization
|
|
/// is needed.
|
|
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
|
|
typedef BasicTTIImplBase<BasicTTIImpl> BaseT;
|
|
friend class BasicTTIImplBase<BasicTTIImpl>;
|
|
|
|
const TargetSubtargetInfo *ST;
|
|
const TargetLoweringBase *TLI;
|
|
|
|
const TargetSubtargetInfo *getST() const { return ST; }
|
|
const TargetLoweringBase *getTLI() const { return TLI; }
|
|
|
|
public:
|
|
explicit BasicTTIImpl(const TargetMachine *ST, const Function &F);
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|