1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

279 lines
9.6 KiB
C++

//===- DependencyAnalysis.cpp - ObjC ARC Optimization ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines special dependency analysis routines used in Objective C
/// ARC Optimizations.
///
/// WARNING: This file knows about certain library functions. It recognizes them
/// by name, and hardwires knowledge of their semantics.
///
/// WARNING: This file knows about how certain Objective-C library functions are
/// used. Naive LLVM IR transformations which would otherwise be
/// behavior-preserving may break these assumptions.
///
//===----------------------------------------------------------------------===//
#include "DependencyAnalysis.h"
#include "ObjCARC.h"
#include "ProvenanceAnalysis.h"
#include "llvm/IR/CFG.h"
using namespace llvm;
using namespace llvm::objcarc;
#define DEBUG_TYPE "objc-arc-dependency"
/// Test whether the given instruction can result in a reference count
/// modification (positive or negative) for the pointer's object.
bool llvm::objcarc::CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA,
ARCInstKind Class) {
switch (Class) {
case ARCInstKind::Autorelease:
case ARCInstKind::AutoreleaseRV:
case ARCInstKind::IntrinsicUser:
case ARCInstKind::User:
// These operations never directly modify a reference count.
return false;
default: break;
}
ImmutableCallSite CS(Inst);
assert(CS && "Only calls can alter reference counts!");
// See if AliasAnalysis can help us with the call.
FunctionModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
if (AliasAnalysis::onlyReadsMemory(MRB))
return false;
if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
const DataLayout &DL = Inst->getModule()->getDataLayout();
for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I) {
const Value *Op = *I;
if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
PA.related(Ptr, Op, DL))
return true;
}
return false;
}
// Assume the worst.
return true;
}
bool llvm::objcarc::CanDecrementRefCount(const Instruction *Inst,
const Value *Ptr,
ProvenanceAnalysis &PA,
ARCInstKind Class) {
// First perform a quick check if Class can not touch ref counts.
if (!CanDecrementRefCount(Class))
return false;
// Otherwise, just use CanAlterRefCount for now.
return CanAlterRefCount(Inst, Ptr, PA, Class);
}
/// Test whether the given instruction can "use" the given pointer's object in a
/// way that requires the reference count to be positive.
bool llvm::objcarc::CanUse(const Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, ARCInstKind Class) {
// ARCInstKind::Call operations (as opposed to
// ARCInstKind::CallOrUser) never "use" objc pointers.
if (Class == ARCInstKind::Call)
return false;
const DataLayout &DL = Inst->getModule()->getDataLayout();
// Consider various instructions which may have pointer arguments which are
// not "uses".
if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
// Comparing a pointer with null, or any other constant, isn't really a use,
// because we don't care what the pointer points to, or about the values
// of any other dynamic reference-counted pointers.
if (!IsPotentialRetainableObjPtr(ICI->getOperand(1), *PA.getAA()))
return false;
} else if (auto CS = ImmutableCallSite(Inst)) {
// For calls, just check the arguments (and not the callee operand).
for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
OE = CS.arg_end(); OI != OE; ++OI) {
const Value *Op = *OI;
if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
PA.related(Ptr, Op, DL))
return true;
}
return false;
} else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// Special-case stores, because we don't care about the stored value, just
// the store address.
const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand(), DL);
// If we can't tell what the underlying object was, assume there is a
// dependence.
return IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
PA.related(Op, Ptr, DL);
}
// Check each operand for a match.
for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
OI != OE; ++OI) {
const Value *Op = *OI;
if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op, DL))
return true;
}
return false;
}
/// Test if there can be dependencies on Inst through Arg. This function only
/// tests dependencies relevant for removing pairs of calls.
bool
llvm::objcarc::Depends(DependenceKind Flavor, Instruction *Inst,
const Value *Arg, ProvenanceAnalysis &PA) {
// If we've reached the definition of Arg, stop.
if (Inst == Arg)
return true;
switch (Flavor) {
case NeedsPositiveRetainCount: {
ARCInstKind Class = GetARCInstKind(Inst);
switch (Class) {
case ARCInstKind::AutoreleasepoolPop:
case ARCInstKind::AutoreleasepoolPush:
case ARCInstKind::None:
return false;
default:
return CanUse(Inst, Arg, PA, Class);
}
}
case AutoreleasePoolBoundary: {
ARCInstKind Class = GetARCInstKind(Inst);
switch (Class) {
case ARCInstKind::AutoreleasepoolPop:
case ARCInstKind::AutoreleasepoolPush:
// These mark the end and begin of an autorelease pool scope.
return true;
default:
// Nothing else does this.
return false;
}
}
case CanChangeRetainCount: {
ARCInstKind Class = GetARCInstKind(Inst);
switch (Class) {
case ARCInstKind::AutoreleasepoolPop:
// Conservatively assume this can decrement any count.
return true;
case ARCInstKind::AutoreleasepoolPush:
case ARCInstKind::None:
return false;
default:
return CanAlterRefCount(Inst, Arg, PA, Class);
}
}
case RetainAutoreleaseDep:
switch (GetBasicARCInstKind(Inst)) {
case ARCInstKind::AutoreleasepoolPop:
case ARCInstKind::AutoreleasepoolPush:
// Don't merge an objc_autorelease with an objc_retain inside a different
// autoreleasepool scope.
return true;
case ARCInstKind::Retain:
case ARCInstKind::RetainRV:
// Check for a retain of the same pointer for merging.
return GetArgRCIdentityRoot(Inst) == Arg;
default:
// Nothing else matters for objc_retainAutorelease formation.
return false;
}
case RetainAutoreleaseRVDep: {
ARCInstKind Class = GetBasicARCInstKind(Inst);
switch (Class) {
case ARCInstKind::Retain:
case ARCInstKind::RetainRV:
// Check for a retain of the same pointer for merging.
return GetArgRCIdentityRoot(Inst) == Arg;
default:
// Anything that can autorelease interrupts
// retainAutoreleaseReturnValue formation.
return CanInterruptRV(Class);
}
}
case RetainRVDep:
return CanInterruptRV(GetBasicARCInstKind(Inst));
}
llvm_unreachable("Invalid dependence flavor");
}
/// Walk up the CFG from StartPos (which is in StartBB) and find local and
/// non-local dependencies on Arg.
///
/// TODO: Cache results?
void
llvm::objcarc::FindDependencies(DependenceKind Flavor,
const Value *Arg,
BasicBlock *StartBB, Instruction *StartInst,
SmallPtrSetImpl<Instruction *> &DependingInsts,
SmallPtrSetImpl<const BasicBlock *> &Visited,
ProvenanceAnalysis &PA) {
BasicBlock::iterator StartPos = StartInst->getIterator();
SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
Worklist.push_back(std::make_pair(StartBB, StartPos));
do {
std::pair<BasicBlock *, BasicBlock::iterator> Pair =
Worklist.pop_back_val();
BasicBlock *LocalStartBB = Pair.first;
BasicBlock::iterator LocalStartPos = Pair.second;
BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
for (;;) {
if (LocalStartPos == StartBBBegin) {
pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
if (PI == PE)
// If we've reached the function entry, produce a null dependence.
DependingInsts.insert(nullptr);
else
// Add the predecessors to the worklist.
do {
BasicBlock *PredBB = *PI;
if (Visited.insert(PredBB).second)
Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
} while (++PI != PE);
break;
}
Instruction *Inst = &*--LocalStartPos;
if (Depends(Flavor, Inst, Arg, PA)) {
DependingInsts.insert(Inst);
break;
}
}
} while (!Worklist.empty());
// Determine whether the original StartBB post-dominates all of the blocks we
// visited. If not, insert a sentinal indicating that most optimizations are
// not safe.
for (const BasicBlock *BB : Visited) {
if (BB == StartBB)
continue;
const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
const BasicBlock *Succ = *SI;
if (Succ != StartBB && !Visited.count(Succ)) {
DependingInsts.insert(reinterpret_cast<Instruction *>(-1));
return;
}
}
}
}