1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Transforms/IPO/OpenMPOpt.cpp
Roman Lebedev c5537f1c00 [OpenMPOpt] deduplicateRuntimeCalls(): avoid traditional map lookup pitfall
Summary:
This roughly halves time spent in that pass,
while unsurprisingly significantly reducing total memory usage.

This makes sense because most functions won't use any openmp functions..

old
```
   0.2329 (  0.5%)   0.0409 (  0.9%)   0.2738 (  0.5%)   0.2736 (  0.5%)  OpenMP specific optimizations
```
```
total runtime: 63.32s.
bytes allocated in total (ignoring deallocations): 8.34GB (131.70MB/s)
calls to allocation functions: 14526259 (229410/s)
temporary memory allocations: 3335760 (52680/s)
peak heap memory consumption: 324.36MB
peak RSS (including heaptrack overhead): 5.39GB
total memory leaked: 289.93MB
```

new
```
   0.1457 (  0.3%)   0.0276 (  0.6%)   0.1732 (  0.3%)   0.1731 (  0.3%)  OpenMP specific optimizations
```
```
total runtime: 55.01s.
bytes allocated in total (ignoring deallocations): 6.70GB (121.89MB/s)
calls to allocation functions: 14268205 (259398/s)
temporary memory allocations: 3225355 (58637/s)
peak heap memory consumption: 324.09MB
peak RSS (including heaptrack overhead): 5.39GB
total memory leaked: 289.87MB
```

diff
```
total runtime: -8.31s.
bytes allocated in total (ignoring deallocations): -1.63GB (196.58MB/s)
calls to allocation functions: -258054 (31034/s)
temporary memory allocations: -110405 (13277/s)
peak heap memory consumption: -262.36KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: -61.45KB
```

Reviewers: jdoerfert, hfinkel

Reviewed By: jdoerfert

Subscribers: yaxunl, hiraditya, guansong, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78299
2020-04-16 19:54:02 +03:00

591 lines
21 KiB
C++

//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// OpenMP specific optimizations:
//
// - Deduplication of runtime calls, e.g., omp_get_thread_num.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/OpenMPOpt.h"
#include "llvm/ADT/EnumeratedArray.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/CallSite.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
using namespace llvm;
using namespace omp;
using namespace types;
#define DEBUG_TYPE "openmp-opt"
static cl::opt<bool> DisableOpenMPOptimizations(
"openmp-opt-disable", cl::ZeroOrMore,
cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
cl::init(false));
STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
"Number of OpenMP runtime calls deduplicated");
STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
"Number of OpenMP runtime functions identified");
STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
"Number of OpenMP runtime function uses identified");
#if !defined(NDEBUG)
static constexpr auto TAG = "[" DEBUG_TYPE "]";
#endif
namespace {
struct OpenMPOpt {
OpenMPOpt(SmallPtrSetImpl<Function *> &SCC,
SmallPtrSetImpl<Function *> &ModuleSlice,
CallGraphUpdater &CGUpdater)
: M(*(*SCC.begin())->getParent()), SCC(SCC), ModuleSlice(ModuleSlice),
OMPBuilder(M), CGUpdater(CGUpdater) {
initializeTypes(M);
initializeRuntimeFunctions();
OMPBuilder.initialize();
}
/// Generic information that describes a runtime function
struct RuntimeFunctionInfo {
/// The kind, as described by the RuntimeFunction enum.
RuntimeFunction Kind;
/// The name of the function.
StringRef Name;
/// Flag to indicate a variadic function.
bool IsVarArg;
/// The return type of the function.
Type *ReturnType;
/// The argument types of the function.
SmallVector<Type *, 8> ArgumentTypes;
/// The declaration if available.
Function *Declaration = nullptr;
/// Uses of this runtime function per function containing the use.
DenseMap<Function *, SmallPtrSet<Use *, 16>> UsesMap;
/// Return the number of arguments (or the minimal number for variadic
/// functions).
size_t getNumArgs() const { return ArgumentTypes.size(); }
/// Run the callback \p CB on each use and forget the use if the result is
/// true. The callback will be fed the function in which the use was
/// encountered as second argument.
void foreachUse(function_ref<bool(Use &, Function &)> CB) {
SmallVector<Use *, 8> ToBeDeleted;
for (auto &It : UsesMap) {
ToBeDeleted.clear();
for (Use *U : It.second)
if (CB(*U, *It.first))
ToBeDeleted.push_back(U);
for (Use *U : ToBeDeleted)
It.second.erase(U);
}
}
};
/// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
bool run() {
bool Changed = false;
LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
<< " functions in a slice with " << ModuleSlice.size()
<< " functions\n");
Changed |= deduplicateRuntimeCalls();
Changed |= deleteParallelRegions();
return Changed;
}
private:
/// Try to delete parallel regions if possible.
bool deleteParallelRegions() {
const unsigned CallbackCalleeOperand = 2;
RuntimeFunctionInfo &RFI = RFIs[OMPRTL___kmpc_fork_call];
if (!RFI.Declaration)
return false;
bool Changed = false;
auto DeleteCallCB = [&](Use &U, Function &) {
CallInst *CI = getCallIfRegularCall(U);
if (!CI)
return false;
auto *Fn = dyn_cast<Function>(
CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
if (!Fn)
return false;
if (!Fn->onlyReadsMemory())
return false;
if (!Fn->hasFnAttribute(Attribute::WillReturn))
return false;
LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
<< CI->getCaller()->getName() << "\n");
CGUpdater.removeCallSite(*CI);
CI->eraseFromParent();
Changed = true;
return true;
};
RFI.foreachUse(DeleteCallCB);
return Changed;
}
/// Try to eliminiate runtime calls by reusing existing ones.
bool deduplicateRuntimeCalls() {
bool Changed = false;
RuntimeFunction DeduplicableRuntimeCallIDs[] = {
OMPRTL_omp_get_num_threads,
OMPRTL_omp_in_parallel,
OMPRTL_omp_get_cancellation,
OMPRTL_omp_get_thread_limit,
OMPRTL_omp_get_supported_active_levels,
OMPRTL_omp_get_level,
OMPRTL_omp_get_ancestor_thread_num,
OMPRTL_omp_get_team_size,
OMPRTL_omp_get_active_level,
OMPRTL_omp_in_final,
OMPRTL_omp_get_proc_bind,
OMPRTL_omp_get_num_places,
OMPRTL_omp_get_num_procs,
OMPRTL_omp_get_place_num,
OMPRTL_omp_get_partition_num_places,
OMPRTL_omp_get_partition_place_nums};
// Global-tid is handled separatly.
SmallSetVector<Value *, 16> GTIdArgs;
collectGlobalThreadIdArguments(GTIdArgs);
LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
<< " global thread ID arguments\n");
for (Function *F : SCC) {
for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
deduplicateRuntimeCalls(*F, RFIs[DeduplicableRuntimeCallID]);
// __kmpc_global_thread_num is special as we can replace it with an
// argument in enough cases to make it worth trying.
Value *GTIdArg = nullptr;
for (Argument &Arg : F->args())
if (GTIdArgs.count(&Arg)) {
GTIdArg = &Arg;
break;
}
Changed |= deduplicateRuntimeCalls(
*F, RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
}
return Changed;
}
static Value *combinedIdentStruct(Value *Ident0, Value *Ident1,
bool GlobalOnly) {
// TODO: Figure out how to actually combine multiple debug locations. For
// now we just keep the first we find.
if (Ident0)
return Ident0;
if (!GlobalOnly || isa<GlobalValue>(Ident1))
return Ident1;
return nullptr;
}
/// Return an `struct ident_t*` value that represents the ones used in the
/// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
/// return a local `struct ident_t*`. For now, if we cannot find a suitable
/// return value we create one from scratch. We also do not yet combine
/// information, e.g., the source locations, see combinedIdentStruct.
Value *getCombinedIdentFromCallUsesIn(RuntimeFunctionInfo &RFI, Function &F,
bool GlobalOnly) {
Value *Ident = nullptr;
auto CombineIdentStruct = [&](Use &U, Function &Caller) {
CallInst *CI = getCallIfRegularCall(U, &RFI);
if (!CI || &F != &Caller)
return false;
Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
/* GlobalOnly */ true);
return false;
};
RFI.foreachUse(CombineIdentStruct);
if (!Ident) {
// The IRBuilder uses the insertion block to get to the module, this is
// unfortunate but we work around it for now.
if (!OMPBuilder.getInsertionPoint().getBlock())
OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
&F.getEntryBlock(), F.getEntryBlock().begin()));
// Create a fallback location if non was found.
// TODO: Use the debug locations of the calls instead.
Constant *Loc = OMPBuilder.getOrCreateDefaultSrcLocStr();
Ident = OMPBuilder.getOrCreateIdent(Loc);
}
return Ident;
}
/// Try to eliminiate calls of \p RFI in \p F by reusing an existing one or
/// \p ReplVal if given.
bool deduplicateRuntimeCalls(Function &F, RuntimeFunctionInfo &RFI,
Value *ReplVal = nullptr) {
auto UsesIt = RFI.UsesMap.find(&F);
if (UsesIt == RFI.UsesMap.end())
return false;
auto &Uses = UsesIt->getSecond();
if (Uses.size() + (ReplVal != nullptr) < 2)
return false;
LLVM_DEBUG(dbgs() << TAG << "Deduplicate " << Uses.size() << " uses of "
<< RFI.Name
<< (ReplVal ? " with an existing value\n" : "\n")
<< "\n");
assert((!ReplVal || (isa<Argument>(ReplVal) &&
cast<Argument>(ReplVal)->getParent() == &F)) &&
"Unexpected replacement value!");
// TODO: Use dominance to find a good position instead.
auto CanBeMoved = [](CallBase &CB) {
unsigned NumArgs = CB.getNumArgOperands();
if (NumArgs == 0)
return true;
if (CB.getArgOperand(0)->getType() != IdentPtr)
return false;
for (unsigned u = 1; u < NumArgs; ++u)
if (isa<Instruction>(CB.getArgOperand(u)))
return false;
return true;
};
if (!ReplVal) {
for (Use *U : Uses)
if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
if (!CanBeMoved(*CI))
continue;
CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
ReplVal = CI;
break;
}
if (!ReplVal)
return false;
}
// If we use a call as a replacement value we need to make sure the ident is
// valid at the new location. For now we just pick a global one, either
// existing and used by one of the calls, or created from scratch.
if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
if (CI->getNumArgOperands() > 0 &&
CI->getArgOperand(0)->getType() == IdentPtr) {
Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
/* GlobalOnly */ true);
CI->setArgOperand(0, Ident);
}
}
bool Changed = false;
auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
CallInst *CI = getCallIfRegularCall(U, &RFI);
if (!CI || CI == ReplVal || &F != &Caller)
return false;
assert(CI->getCaller() == &F && "Unexpected call!");
CGUpdater.removeCallSite(*CI);
CI->replaceAllUsesWith(ReplVal);
CI->eraseFromParent();
++NumOpenMPRuntimeCallsDeduplicated;
Changed = true;
return true;
};
RFI.foreachUse(ReplaceAndDeleteCB);
return Changed;
}
/// Collect arguments that represent the global thread id in \p GTIdArgs.
void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
// TODO: Below we basically perform a fixpoint iteration with a pessimistic
// initialization. We could define an AbstractAttribute instead and
// run the Attributor here once it can be run as an SCC pass.
// Helper to check the argument \p ArgNo at all call sites of \p F for
// a GTId.
auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
if (!F.hasLocalLinkage())
return false;
for (Use &U : F.uses()) {
if (CallInst *CI = getCallIfRegularCall(U)) {
Value *ArgOp = CI->getArgOperand(ArgNo);
if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
getCallIfRegularCall(*ArgOp,
&RFIs[OMPRTL___kmpc_global_thread_num]))
continue;
}
return false;
}
return true;
};
// Helper to identify uses of a GTId as GTId arguments.
auto AddUserArgs = [&](Value &GTId) {
for (Use &U : GTId.uses())
if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
if (CI->isArgOperand(&U))
if (Function *Callee = CI->getCalledFunction())
if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
};
// The argument users of __kmpc_global_thread_num calls are GTIds.
RuntimeFunctionInfo &GlobThreadNumRFI =
RFIs[OMPRTL___kmpc_global_thread_num];
for (auto &It : GlobThreadNumRFI.UsesMap)
for (Use *U : It.second)
if (CallInst *CI = getCallIfRegularCall(*U, &GlobThreadNumRFI))
AddUserArgs(*CI);
// Transitively search for more arguments by looking at the users of the
// ones we know already. During the search the GTIdArgs vector is extended
// so we cannot cache the size nor can we use a range based for.
for (unsigned u = 0; u < GTIdArgs.size(); ++u)
AddUserArgs(*GTIdArgs[u]);
}
/// Return the call if \p U is a callee use in a regular call. If \p RFI is
/// given it has to be the callee or a nullptr is returned.
CallInst *getCallIfRegularCall(Use &U, RuntimeFunctionInfo *RFI = nullptr) {
CallInst *CI = dyn_cast<CallInst>(U.getUser());
if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
(!RFI || CI->getCalledFunction() == RFI->Declaration))
return CI;
return nullptr;
}
/// Return the call if \p V is a regular call. If \p RFI is given it has to be
/// the callee or a nullptr is returned.
CallInst *getCallIfRegularCall(Value &V, RuntimeFunctionInfo *RFI = nullptr) {
CallInst *CI = dyn_cast<CallInst>(&V);
if (CI && !CI->hasOperandBundles() &&
(!RFI || CI->getCalledFunction() == RFI->Declaration))
return CI;
return nullptr;
}
/// Returns true if the function declaration \p F matches the runtime
/// function types, that is, return type \p RTFRetType, and argument types
/// \p RTFArgTypes.
static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
SmallVector<Type *, 8> &RTFArgTypes) {
// TODO: We should output information to the user (under debug output
// and via remarks).
if (!F)
return false;
if (F->getReturnType() != RTFRetType)
return false;
if (F->arg_size() != RTFArgTypes.size())
return false;
auto RTFTyIt = RTFArgTypes.begin();
for (Argument &Arg : F->args()) {
if (Arg.getType() != *RTFTyIt)
return false;
++RTFTyIt;
}
return true;
}
/// Helper to initialize all runtime function information for those defined in
/// OpenMPKinds.def.
void initializeRuntimeFunctions() {
// Helper to collect all uses of the decleration in the UsesMap.
auto CollectUses = [&](RuntimeFunctionInfo &RFI) {
unsigned NumUses = 0;
if (!RFI.Declaration)
return NumUses;
OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
NumOpenMPRuntimeFunctionsIdentified += 1;
NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
// TODO: We directly convert uses into proper calls and unknown uses.
for (Use &U : RFI.Declaration->uses()) {
if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
if (ModuleSlice.count(UserI->getFunction())) {
RFI.UsesMap[UserI->getFunction()].insert(&U);
++NumUses;
}
} else {
RFI.UsesMap[nullptr].insert(&U);
++NumUses;
}
}
return NumUses;
};
#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
{ \
SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
Function *F = M.getFunction(_Name); \
if (declMatchesRTFTypes(F, _ReturnType , ArgsTypes)) { \
auto &RFI = RFIs[_Enum]; \
RFI.Kind = _Enum; \
RFI.Name = _Name; \
RFI.IsVarArg = _IsVarArg; \
RFI.ReturnType = _ReturnType; \
RFI.ArgumentTypes = std::move(ArgsTypes); \
RFI.Declaration = F; \
unsigned NumUses = CollectUses(RFI); \
(void)NumUses; \
LLVM_DEBUG({ \
dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
<< " found\n"; \
if (RFI.Declaration) \
dbgs() << TAG << "-> got " << NumUses << " uses in " \
<< RFI.UsesMap.size() << " different functions.\n"; \
}); \
} \
}
#include "llvm/Frontend/OpenMP/OMPKinds.def"
// TODO: We should attach the attributes defined in OMPKinds.def.
}
/// The underyling module.
Module &M;
/// The SCC we are operating on.
SmallPtrSetImpl<Function *> &SCC;
/// The slice of the module we are allowed to look at.
SmallPtrSetImpl<Function *> &ModuleSlice;
/// An OpenMP-IR-Builder instance
OpenMPIRBuilder OMPBuilder;
/// Callback to update the call graph, the first argument is a removed call,
/// the second an optional replacement call.
CallGraphUpdater &CGUpdater;
/// Map from runtime function kind to the runtime function description.
EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
RuntimeFunction::OMPRTL___last>
RFIs;
};
} // namespace
PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule))
return PreservedAnalyses::all();
if (DisableOpenMPOptimizations)
return PreservedAnalyses::all();
SmallPtrSet<Function *, 16> SCC;
for (LazyCallGraph::Node &N : C)
SCC.insert(&N.getFunction());
if (SCC.empty())
return PreservedAnalyses::all();
CallGraphUpdater CGUpdater;
CGUpdater.initialize(CG, C, AM, UR);
// TODO: Compute the module slice we are allowed to look at.
OpenMPOpt OMPOpt(SCC, SCC, CGUpdater);
bool Changed = OMPOpt.run();
(void)Changed;
return PreservedAnalyses::all();
}
namespace {
struct OpenMPOptLegacyPass : public CallGraphSCCPass {
CallGraphUpdater CGUpdater;
OpenMPInModule OMPInModule;
static char ID;
OpenMPOptLegacyPass() : CallGraphSCCPass(ID) {
initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
CallGraphSCCPass::getAnalysisUsage(AU);
}
bool doInitialization(CallGraph &CG) override {
// Disable the pass if there is no OpenMP (runtime call) in the module.
containsOpenMP(CG.getModule(), OMPInModule);
return false;
}
bool runOnSCC(CallGraphSCC &CGSCC) override {
if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule))
return false;
if (DisableOpenMPOptimizations || skipSCC(CGSCC))
return false;
SmallPtrSet<Function *, 16> SCC;
for (CallGraphNode *CGN : CGSCC)
if (Function *Fn = CGN->getFunction())
if (!Fn->isDeclaration())
SCC.insert(Fn);
if (SCC.empty())
return false;
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
CGUpdater.initialize(CG, CGSCC);
// TODO: Compute the module slice we are allowed to look at.
OpenMPOpt OMPOpt(SCC, SCC, CGUpdater);
return OMPOpt.run();
}
bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
};
} // end anonymous namespace
bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) {
if (OMPInModule.isKnown())
return OMPInModule;
#define OMP_RTL(_Enum, _Name, ...) \
if (M.getFunction(_Name)) \
return OMPInModule = true;
#include "llvm/Frontend/OpenMP/OMPKinds.def"
return OMPInModule = false;
}
char OpenMPOptLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt",
"OpenMP specific optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt",
"OpenMP specific optimizations", false, false)
Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); }