1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/lib/Analysis/IVUsers.cpp
Chandler Carruth e59e4b3dc5 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00

382 lines
14 KiB
C++

//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements bookkeeping for "interesting" users of expressions
// computed from induction variables.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IVUsers.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "iv-users"
AnalysisKey IVUsersAnalysis::Key;
IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
}
char IVUsersWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
"Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
false, true)
Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
/// isInteresting - Test whether the given expression is "interesting" when
/// used by the given expression, within the context of analyzing the
/// given loop.
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
ScalarEvolution *SE, LoopInfo *LI) {
// An addrec is interesting if it's affine or if it has an interesting start.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// Keep things simple. Don't touch loop-variant strides unless they're
// only used outside the loop and we can simplify them.
if (AR->getLoop() == L)
return AR->isAffine() ||
(!L->contains(I) &&
SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
// Otherwise recurse to see if the start value is interesting, and that
// the step value is not interesting, since we don't yet know how to
// do effective SCEV expansions for addrecs with interesting steps.
return isInteresting(AR->getStart(), I, L, SE, LI) &&
!isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
}
// An add is interesting if exactly one of its operands is interesting.
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
bool AnyInterestingYet = false;
for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
OI != OE; ++OI)
if (isInteresting(*OI, I, L, SE, LI)) {
if (AnyInterestingYet)
return false;
AnyInterestingYet = true;
}
return AnyInterestingYet;
}
// Nothing else is interesting here.
return false;
}
/// Return true if all loop headers that dominate this block are in simplified
/// form.
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
const LoopInfo *LI,
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
Loop *NearestLoop = nullptr;
for (DomTreeNode *Rung = DT->getNode(BB);
Rung; Rung = Rung->getIDom()) {
BasicBlock *DomBB = Rung->getBlock();
Loop *DomLoop = LI->getLoopFor(DomBB);
if (DomLoop && DomLoop->getHeader() == DomBB) {
// If the domtree walk reaches a loop with no preheader, return false.
if (!DomLoop->isLoopSimplifyForm())
return false;
// If we have already checked this loop nest, stop checking.
if (SimpleLoopNests.count(DomLoop))
break;
// If we have not already checked this loop nest, remember the loop
// header nearest to BB. The nearest loop may not contain BB.
if (!NearestLoop)
NearestLoop = DomLoop;
}
}
if (NearestLoop)
SimpleLoopNests.insert(NearestLoop);
return true;
}
/// AddUsersImpl - Inspect the specified instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool IVUsers::AddUsersImpl(Instruction *I,
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
const DataLayout &DL = I->getModule()->getDataLayout();
// Add this IV user to the Processed set before returning false to ensure that
// all IV users are members of the set. See IVUsers::isIVUserOrOperand.
if (!Processed.insert(I).second)
return true; // Instruction already handled.
if (!SE->isSCEVable(I->getType()))
return false; // Void and FP expressions cannot be reduced.
// IVUsers is used by LSR which assumes that all SCEV expressions are safe to
// pass to SCEVExpander. Expressions are not safe to expand if they represent
// operations that are not safe to speculate, namely integer division.
if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
return false;
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
// Also avoid creating IVs of non-native types. For example, we don't want a
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
uint64_t Width = SE->getTypeSizeInBits(I->getType());
if (Width > 64 || !DL.isLegalInteger(Width))
return false;
// Don't attempt to promote ephemeral values to indvars. They will be removed
// later anyway.
if (EphValues.count(I))
return false;
// Get the symbolic expression for this instruction.
const SCEV *ISE = SE->getSCEV(I);
// If we've come to an uninteresting expression, stop the traversal and
// call this a user.
if (!isInteresting(ISE, I, L, SE, LI))
return false;
SmallPtrSet<Instruction *, 4> UniqueUsers;
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (!UniqueUsers.insert(User).second)
continue;
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && Processed.count(User))
continue;
// Only consider IVUsers that are dominated by simplified loop
// headers. Otherwise, SCEVExpander will crash.
BasicBlock *UseBB = User->getParent();
// A phi's use is live out of its predecessor block.
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
unsigned OperandNo = U.getOperandNo();
unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
UseBB = PHI->getIncomingBlock(ValNo);
}
if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
return false;
// Descend recursively, but not into PHI nodes outside the current loop.
// It's important to see the entire expression outside the loop to get
// choices that depend on addressing mode use right, although we won't
// consider references outside the loop in all cases.
// If User is already in Processed, we don't want to recurse into it again,
// but do want to record a second reference in the same instruction.
bool AddUserToIVUsers = false;
if (LI->getLoopFor(User->getParent()) != L) {
if (isa<PHINode>(User) || Processed.count(User) ||
!AddUsersImpl(User, SimpleLoopNests)) {
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
<< " OF SCEV: " << *ISE << '\n');
AddUserToIVUsers = true;
}
} else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
<< " OF SCEV: " << *ISE << '\n');
AddUserToIVUsers = true;
}
if (AddUserToIVUsers) {
// Okay, we found a user that we cannot reduce.
IVStrideUse &NewUse = AddUser(User, I);
// Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
// The regular return value here is discarded; instead of recording
// it, we just recompute it when we need it.
const SCEV *OriginalISE = ISE;
ISE = TransformForPostIncUse(NormalizeAutodetect,
ISE, User, I,
NewUse.PostIncLoops,
*SE, *DT);
// PostIncNormalization effectively simplifies the expression under
// pre-increment assumptions. Those assumptions (no wrapping) might not
// hold for the post-inc value. Catch such cases by making sure the
// transformation is invertible.
if (OriginalISE != ISE) {
const SCEV *DenormalizedISE =
TransformForPostIncUse(Denormalize, ISE, User, I,
NewUse.PostIncLoops, *SE, *DT);
// If we normalized the expression, but denormalization doesn't give the
// original one, discard this user.
if (OriginalISE != DenormalizedISE) {
DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
<< *ISE << '\n');
IVUses.pop_back();
return false;
}
}
DEBUG(if (SE->getSCEV(I) != ISE)
dbgs() << " NORMALIZED TO: " << *ISE << '\n');
}
}
return true;
}
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
// SCEVExpander can only handle users that are dominated by simplified loop
// entries. Keep track of all loops that are only dominated by other simple
// loops so we don't traverse the domtree for each user.
SmallPtrSet<Loop*,16> SimpleLoopNests;
return AddUsersImpl(I, SimpleLoopNests);
}
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
IVUses.push_back(new IVStrideUse(this, User, Operand));
return IVUses.back();
}
IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
ScalarEvolution *SE)
: L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
// Collect ephemeral values so that AddUsersIfInteresting skips them.
EphValues.clear();
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
// this loop. If they are induction variables, inspect their uses.
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
(void)AddUsersIfInteresting(&*I);
}
void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << "IV Users for loop ";
L->getHeader()->printAsOperand(OS, false);
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
}
OS << ":\n";
for (const IVStrideUse &IVUse : IVUses) {
OS << " ";
IVUse.getOperandValToReplace()->printAsOperand(OS, false);
OS << " = " << *getReplacementExpr(IVUse);
for (auto PostIncLoop : IVUse.PostIncLoops) {
OS << " (post-inc with loop ";
PostIncLoop->getHeader()->printAsOperand(OS, false);
OS << ")";
}
OS << " in ";
if (IVUse.getUser())
IVUse.getUser()->print(OS);
else
OS << "Printing <null> User";
OS << '\n';
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
#endif
void IVUsers::releaseMemory() {
Processed.clear();
IVUses.clear();
}
IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
}
void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.setPreservesAll();
}
bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*L->getHeader()->getParent());
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
IU.reset(new IVUsers(L, AC, LI, DT, SE));
return false;
}
void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
IU->print(OS, M);
}
void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace.
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
return SE->getSCEV(IU.getOperandValToReplace());
}
/// getExpr - Return the expression for the use.
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
return
TransformForPostIncUse(Normalize, getReplacementExpr(IU),
IU.getUser(), IU.getOperandValToReplace(),
const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
*SE, *DT);
}
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
if (AR->getLoop() == L)
return AR;
return findAddRecForLoop(AR->getStart(), L);
}
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
I != E; ++I)
if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
return AR;
return nullptr;
}
return nullptr;
}
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
return AR->getStepRecurrence(*SE);
return nullptr;
}
void IVStrideUse::transformToPostInc(const Loop *L) {
PostIncLoops.insert(L);
}
void IVStrideUse::deleted() {
// Remove this user from the list.
Parent->Processed.erase(this->getUser());
Parent->IVUses.erase(this);
// this now dangles!
}