1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/Target/X86/X86InstrFragmentsSIMD.td
Adam Nemet 3cbf71a23b [X86] Separate DAG node for valign and palignr
They have different semantics (valign is interlane while palingr is intralane)
and palingr is still needed even in the AVX512 context.  According to the
latest spec AVX512BW provides these.

llvm-svn: 214887
2014-08-05 17:22:55 +00:00

574 lines
27 KiB
TableGen

//===-- X86InstrFragmentsSIMD.td - x86 SIMD ISA ------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides pattern fragments useful for SIMD instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MMX Pattern Fragments
//===----------------------------------------------------------------------===//
def load_mmx : PatFrag<(ops node:$ptr), (x86mmx (load node:$ptr))>;
def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>;
//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
SDTCisFP<0>, SDTCisInt<2> ]>;
def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
SDTCisFP<1>, SDTCisVT<3, i8>,
SDTCisVec<1>]>;
def X86umin : SDNode<"X86ISD::UMIN", SDTIntBinOp>;
def X86umax : SDNode<"X86ISD::UMAX", SDTIntBinOp>;
def X86smin : SDNode<"X86ISD::SMIN", SDTIntBinOp>;
def X86smax : SDNode<"X86ISD::SMAX", SDTIntBinOp>;
def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>;
def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>;
// Commutative and Associative FMIN and FMAX.
def X86fminc : SDNode<"X86ISD::FMINC", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fmaxc : SDNode<"X86ISD::FMAXC", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fandn : SDNode<"X86ISD::FANDN", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>;
def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>;
def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
def X86fgetsign: SDNode<"X86ISD::FGETSIGNx86",SDTFPToIntOp>;
def X86fhadd : SDNode<"X86ISD::FHADD", SDTFPBinOp>;
def X86fhsub : SDNode<"X86ISD::FHSUB", SDTFPBinOp>;
def X86hadd : SDNode<"X86ISD::HADD", SDTIntBinOp>;
def X86hsub : SDNode<"X86ISD::HSUB", SDTIntBinOp>;
def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>;
def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>;
def X86cmps : SDNode<"X86ISD::FSETCC", SDTX86Cmps>;
//def X86cmpsd : SDNode<"X86ISD::FSETCCsd", SDTX86Cmpsd>;
def X86pshufb : SDNode<"X86ISD::PSHUFB",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86andnp : SDNode<"X86ISD::ANDNP",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86psign : SDNode<"X86ISD::PSIGN",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86pextrb : SDNode<"X86ISD::PEXTRB",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pextrw : SDNode<"X86ISD::PEXTRW",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pinsrb : SDNode<"X86ISD::PINSRB",
SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86pinsrw : SDNode<"X86ISD::PINSRW",
SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86insertps : SDNode<"X86ISD::INSERTPS",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86vzext : SDNode<"X86ISD::VZEXT",
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisInt<0>, SDTCisInt<1>,
SDTCisOpSmallerThanOp<1, 0>]>>;
def X86vsext : SDNode<"X86ISD::VSEXT",
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisInt<0>, SDTCisInt<1>,
SDTCisOpSmallerThanOp<1, 0>]>>;
def X86vtrunc : SDNode<"X86ISD::VTRUNC",
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisInt<0>, SDTCisInt<1>,
SDTCisOpSmallerThanOp<0, 1>]>>;
def X86trunc : SDNode<"X86ISD::TRUNC",
SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisOpSmallerThanOp<0, 1>]>>;
def X86vtruncm : SDNode<"X86ISD::VTRUNCM",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisInt<0>, SDTCisInt<1>,
SDTCisVec<2>, SDTCisInt<2>,
SDTCisOpSmallerThanOp<0, 2>]>>;
def X86vfpext : SDNode<"X86ISD::VFPEXT",
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisFP<0>, SDTCisFP<1>,
SDTCisOpSmallerThanOp<1, 0>]>>;
def X86vfpround: SDNode<"X86ISD::VFPROUND",
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisFP<0>, SDTCisFP<1>,
SDTCisOpSmallerThanOp<0, 1>]>>;
def X86vshldq : SDNode<"X86ISD::VSHLDQ", SDTIntShiftOp>;
def X86vshrdq : SDNode<"X86ISD::VSRLDQ", SDTIntShiftOp>;
def X86cmpp : SDNode<"X86ISD::CMPP", SDTX86VFCMP>;
def X86pcmpeq : SDNode<"X86ISD::PCMPEQ", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpgt : SDNode<"X86ISD::PCMPGT", SDTIntBinOp>;
def X86IntCmpMask : SDTypeProfile<1, 2,
[SDTCisVec<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>]>;
def X86pcmpeqm : SDNode<"X86ISD::PCMPEQM", X86IntCmpMask, [SDNPCommutative]>;
def X86pcmpgtm : SDNode<"X86ISD::PCMPGTM", X86IntCmpMask>;
def X86CmpMaskCC :
SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<0>, SDTCisVec<1>,
SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
def X86CmpMaskCCScalar :
SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
def X86cmpm : SDNode<"X86ISD::CMPM", X86CmpMaskCC>;
def X86cmpmu : SDNode<"X86ISD::CMPMU", X86CmpMaskCC>;
def X86cmpms : SDNode<"X86ISD::FSETCC", X86CmpMaskCCScalar>;
def X86vshl : SDNode<"X86ISD::VSHL",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisVec<2>]>>;
def X86vsrl : SDNode<"X86ISD::VSRL",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisVec<2>]>>;
def X86vsra : SDNode<"X86ISD::VSRA",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisVec<2>]>>;
def X86vshli : SDNode<"X86ISD::VSHLI", SDTIntShiftOp>;
def X86vsrli : SDNode<"X86ISD::VSRLI", SDTIntShiftOp>;
def X86vsrai : SDNode<"X86ISD::VSRAI", SDTIntShiftOp>;
def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVec<1>,
SDTCisSameAs<2, 1>]>;
def X86subus : SDNode<"X86ISD::SUBUS", SDTIntBinOp>;
def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>;
def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>;
def X86kortest : SDNode<"X86ISD::KORTEST", SDTX86CmpPTest>;
def X86testm : SDNode<"X86ISD::TESTM", SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisVec<1>,
SDTCisSameAs<2, 1>]>>;
def X86testnm : SDNode<"X86ISD::TESTNM", SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisVec<1>,
SDTCisSameAs<2, 1>]>>;
def X86select : SDNode<"X86ISD::SELECT" , SDTSelect>;
def X86pmuludq : SDNode<"X86ISD::PMULUDQ",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisSameAs<1,2>]>>;
def X86pmuldq : SDNode<"X86ISD::PMULDQ",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisSameAs<1,2>]>>;
// Specific shuffle nodes - At some point ISD::VECTOR_SHUFFLE will always get
// translated into one of the target nodes below during lowering.
// Note: this is a work in progress...
def SDTShuff1Op : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>;
def SDTShuff3Op : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>;
def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisSameAs<0,1>, SDTCisInt<2>]>;
def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisInt<3>]>;
def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def SDTVBroadcastm : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>]>;
def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<1,2>, SDTCisVT<3, i32>]>;
def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>,
SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>;
def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>;
def X86VAlign : SDNode<"X86ISD::VALIGN", SDTShuff3OpI>;
def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>;
def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>;
def X86PShuflw : SDNode<"X86ISD::PSHUFLW", SDTShuff2OpI>;
def X86Shufp : SDNode<"X86ISD::SHUFP", SDTShuff3OpI>;
def X86Movddup : SDNode<"X86ISD::MOVDDUP", SDTShuff1Op>;
def X86Movshdup : SDNode<"X86ISD::MOVSHDUP", SDTShuff1Op>;
def X86Movsldup : SDNode<"X86ISD::MOVSLDUP", SDTShuff1Op>;
def X86Movsd : SDNode<"X86ISD::MOVSD", SDTShuff2Op>;
def X86Movss : SDNode<"X86ISD::MOVSS", SDTShuff2Op>;
def X86Movlhps : SDNode<"X86ISD::MOVLHPS", SDTShuff2Op>;
def X86Movlhpd : SDNode<"X86ISD::MOVLHPD", SDTShuff2Op>;
def X86Movhlps : SDNode<"X86ISD::MOVHLPS", SDTShuff2Op>;
def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>;
def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>;
def SDTPack : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>;
def X86Packss : SDNode<"X86ISD::PACKSS", SDTPack>;
def X86Packus : SDNode<"X86ISD::PACKUS", SDTPack>;
def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>;
def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>;
def X86VPermilp : SDNode<"X86ISD::VPERMILP", SDTShuff2OpI>;
def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>;
def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>;
def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>;
def X86VPermiv3 : SDNode<"X86ISD::VPERMIV3", SDTShuff3Op>;
def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>;
def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>;
def X86VBroadcastm : SDNode<"X86ISD::VBROADCASTM", SDTVBroadcastm>;
def X86Vinsert : SDNode<"X86ISD::VINSERT", SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>;
def X86Vextract : SDNode<"X86ISD::VEXTRACT", SDTypeProfile<1, 2,
[SDTCisVec<1>, SDTCisPtrTy<2>]>, []>;
def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>;
def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>;
def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>;
def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>;
def X86Fnmsub : SDNode<"X86ISD::FNMSUB", SDTFma>;
def X86Fmaddsub : SDNode<"X86ISD::FMADDSUB", SDTFma>;
def X86Fmsubadd : SDNode<"X86ISD::FMSUBADD", SDTFma>;
def SDT_PCMPISTRI : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, v16i8>, SDTCisVT<3, v16i8>,
SDTCisVT<4, i8>]>;
def SDT_PCMPESTRI : SDTypeProfile<2, 5, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, v16i8>, SDTCisVT<3, i32>,
SDTCisVT<4, v16i8>, SDTCisVT<5, i32>,
SDTCisVT<6, i8>]>;
def X86pcmpistri : SDNode<"X86ISD::PCMPISTRI", SDT_PCMPISTRI>;
def X86pcmpestri : SDNode<"X86ISD::PCMPESTRI", SDT_PCMPESTRI>;
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements. These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
SDNPWantRoot]>;
def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
SDNPWantRoot]>;
def ssmem : Operand<v4f32> {
let PrintMethod = "printf32mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86Mem32AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
def sdmem : Operand<v2f64> {
let PrintMethod = "printf64mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86Mem64AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//
// 128-bit load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
// 256-bit load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>;
def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>;
def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
// 512-bit load pattern fragments
def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>;
def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>;
def loadv64i8 : PatFrag<(ops node:$ptr), (v64i8 (load node:$ptr))>;
def loadv32i16 : PatFrag<(ops node:$ptr), (v32i16 (load node:$ptr))>;
def loadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (load node:$ptr))>;
def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>;
// 128-/256-/512-bit extload pattern fragments
def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>;
def extloadv4f32 : PatFrag<(ops node:$ptr), (v4f64 (extloadvf32 node:$ptr))>;
def extloadv8f32 : PatFrag<(ops node:$ptr), (v8f64 (extloadvf32 node:$ptr))>;
// Like 'store', but always requires 128-bit vector alignment.
def alignedstore : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'store', but always requires 256-bit vector alignment.
def alignedstore256 : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 32;
}]>;
// Like 'store', but always requires 512-bit vector alignment.
def alignedstore512 : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 64;
}]>;
// Like 'load', but always requires 128-bit vector alignment.
def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'X86vzload', but always requires 128-bit vector alignment.
def alignedX86vzload : PatFrag<(ops node:$ptr), (X86vzload node:$ptr), [{
return cast<MemSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'load', but always requires 256-bit vector alignment.
def alignedload256 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 32;
}]>;
// Like 'load', but always requires 512-bit vector alignment.
def alignedload512 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 64;
}]>;
def alignedloadfsf32 : PatFrag<(ops node:$ptr),
(f32 (alignedload node:$ptr))>;
def alignedloadfsf64 : PatFrag<(ops node:$ptr),
(f64 (alignedload node:$ptr))>;
// 128-bit aligned load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def alignedloadv4f32 : PatFrag<(ops node:$ptr),
(v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr),
(v2f64 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr),
(v2i64 (alignedload node:$ptr))>;
// 256-bit aligned load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def alignedloadv8f32 : PatFrag<(ops node:$ptr),
(v8f32 (alignedload256 node:$ptr))>;
def alignedloadv4f64 : PatFrag<(ops node:$ptr),
(v4f64 (alignedload256 node:$ptr))>;
def alignedloadv4i64 : PatFrag<(ops node:$ptr),
(v4i64 (alignedload256 node:$ptr))>;
// 512-bit aligned load pattern fragments
def alignedloadv16f32 : PatFrag<(ops node:$ptr),
(v16f32 (alignedload512 node:$ptr))>;
def alignedloadv16i32 : PatFrag<(ops node:$ptr),
(v16i32 (alignedload512 node:$ptr))>;
def alignedloadv8f64 : PatFrag<(ops node:$ptr),
(v8f64 (alignedload512 node:$ptr))>;
def alignedloadv8i64 : PatFrag<(ops node:$ptr),
(v8i64 (alignedload512 node:$ptr))>;
// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others. If the subtarget
// allows unaligned accesses, match any load, though this may require
// setting a feature bit in the processor (on startup, for example).
// Opteron 10h and later implement such a feature.
def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return Subtarget->hasVectorUAMem()
|| cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
def memop4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return Subtarget->hasVectorUAMem()
|| cast<LoadSDNode>(N)->getAlignment() >= 4;
}]>;
def memop8 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return Subtarget->hasVectorUAMem()
|| cast<LoadSDNode>(N)->getAlignment() >= 8;
}]>;
def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>;
// 128-bit memop pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>;
def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>;
def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>;
// 256-bit memop pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def memopv8f32 : PatFrag<(ops node:$ptr), (v8f32 (memop node:$ptr))>;
def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>;
def memopv4i64 : PatFrag<(ops node:$ptr), (v4i64 (memop node:$ptr))>;
// 512-bit memop pattern fragments
def memopv16f32 : PatFrag<(ops node:$ptr), (v16f32 (memop4 node:$ptr))>;
def memopv8f64 : PatFrag<(ops node:$ptr), (v8f64 (memop8 node:$ptr))>;
def memopv16i32 : PatFrag<(ops node:$ptr), (v16i32 (memop4 node:$ptr))>;
def memopv8i64 : PatFrag<(ops node:$ptr), (v8i64 (memop8 node:$ptr))>;
// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
// 16-byte boundary.
// FIXME: 8 byte alignment for mmx reads is not required
def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 8;
}]>;
def memopmmx : PatFrag<(ops node:$ptr), (x86mmx (memop64 node:$ptr))>;
// MOVNT Support
// Like 'store', but requires the non-temporal bit to be set
def nontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal();
return false;
}]>;
def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal() && !ST->isTruncatingStore() &&
ST->getAddressingMode() == ISD::UNINDEXED &&
ST->getAlignment() >= 16;
return false;
}]>;
def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal() &&
ST->getAlignment() < 16;
return false;
}]>;
// 128-bit bitconvert pattern fragments
def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;
// 256-bit bitconvert pattern fragments
def bc_v32i8 : PatFrag<(ops node:$in), (v32i8 (bitconvert node:$in))>;
def bc_v16i16 : PatFrag<(ops node:$in), (v16i16 (bitconvert node:$in))>;
def bc_v8i32 : PatFrag<(ops node:$in), (v8i32 (bitconvert node:$in))>;
def bc_v4i64 : PatFrag<(ops node:$in), (v4i64 (bitconvert node:$in))>;
def bc_v8f32 : PatFrag<(ops node:$in), (v8f32 (bitconvert node:$in))>;
// 512-bit bitconvert pattern fragments
def bc_v16i32 : PatFrag<(ops node:$in), (v16i32 (bitconvert node:$in))>;
def bc_v8i64 : PatFrag<(ops node:$in), (v8i64 (bitconvert node:$in))>;
def bc_v8f64 : PatFrag<(ops node:$in), (v8f64 (bitconvert node:$in))>;
def bc_v16f32 : PatFrag<(ops node:$in), (v16f32 (bitconvert node:$in))>;
def vzmovl_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector (loadi64 node:$src))))))>;
def vzmovl_v4i32 : PatFrag<(ops node:$src),
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 node:$src))))))>;
def vzload_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzload node:$src)))>;
def fp32imm0 : PatLeaf<(f32 fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def I8Imm : SDNodeXForm<imm, [{
// Transformation function: get the low 8 bits.
return getI8Imm((uint8_t)N->getZExtValue());
}]>;
def FROUND_NO_EXC : ImmLeaf<i32, [{ return Imm == 8; }]>;
def FROUND_CURRENT : ImmLeaf<i32, [{ return Imm == 4; }]>;
// BYTE_imm - Transform bit immediates into byte immediates.
def BYTE_imm : SDNodeXForm<imm, [{
// Transformation function: imm >> 3
return getI32Imm(N->getZExtValue() >> 3);
}]>;
// EXTRACT_get_vextract128_imm xform function: convert extract_subvector index
// to VEXTRACTF128/VEXTRACTI128 imm.
def EXTRACT_get_vextract128_imm : SDNodeXForm<extract_subvector, [{
return getI8Imm(X86::getExtractVEXTRACT128Immediate(N));
}]>;
// INSERT_get_vinsert128_imm xform function: convert insert_subvector index to
// VINSERTF128/VINSERTI128 imm.
def INSERT_get_vinsert128_imm : SDNodeXForm<insert_subvector, [{
return getI8Imm(X86::getInsertVINSERT128Immediate(N));
}]>;
// EXTRACT_get_vextract256_imm xform function: convert extract_subvector index
// to VEXTRACTF64x4 imm.
def EXTRACT_get_vextract256_imm : SDNodeXForm<extract_subvector, [{
return getI8Imm(X86::getExtractVEXTRACT256Immediate(N));
}]>;
// INSERT_get_vinsert256_imm xform function: convert insert_subvector index to
// VINSERTF64x4 imm.
def INSERT_get_vinsert256_imm : SDNodeXForm<insert_subvector, [{
return getI8Imm(X86::getInsertVINSERT256Immediate(N));
}]>;
def vextract128_extract : PatFrag<(ops node:$bigvec, node:$index),
(extract_subvector node:$bigvec,
node:$index), [{
return X86::isVEXTRACT128Index(N);
}], EXTRACT_get_vextract128_imm>;
def vinsert128_insert : PatFrag<(ops node:$bigvec, node:$smallvec,
node:$index),
(insert_subvector node:$bigvec, node:$smallvec,
node:$index), [{
return X86::isVINSERT128Index(N);
}], INSERT_get_vinsert128_imm>;
def vextract256_extract : PatFrag<(ops node:$bigvec, node:$index),
(extract_subvector node:$bigvec,
node:$index), [{
return X86::isVEXTRACT256Index(N);
}], EXTRACT_get_vextract256_imm>;
def vinsert256_insert : PatFrag<(ops node:$bigvec, node:$smallvec,
node:$index),
(insert_subvector node:$bigvec, node:$smallvec,
node:$index), [{
return X86::isVINSERT256Index(N);
}], INSERT_get_vinsert256_imm>;