1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/IR/Module.cpp
Hiroshi Yamauchi c65f25e192 [PGO] Improve the working set size heuristics under the partial sample PGO.
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.

To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.

The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.

Reviewers: davidxl

Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79831
2020-06-01 10:29:23 -07:00

697 lines
24 KiB
C++

//===- Module.cpp - Implement the Module class ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Module.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/VersionTuple.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Methods to implement the globals and functions lists.
//
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file.
template class llvm::SymbolTableListTraits<Function>;
template class llvm::SymbolTableListTraits<GlobalVariable>;
template class llvm::SymbolTableListTraits<GlobalAlias>;
template class llvm::SymbolTableListTraits<GlobalIFunc>;
//===----------------------------------------------------------------------===//
// Primitive Module methods.
//
Module::Module(StringRef MID, LLVMContext &C)
: Context(C), ValSymTab(std::make_unique<ValueSymbolTable>()),
Materializer(), ModuleID(std::string(MID)),
SourceFileName(std::string(MID)), DL("") {
Context.addModule(this);
}
Module::~Module() {
Context.removeModule(this);
dropAllReferences();
GlobalList.clear();
FunctionList.clear();
AliasList.clear();
IFuncList.clear();
}
std::unique_ptr<RandomNumberGenerator>
Module::createRNG(const StringRef Name) const {
SmallString<32> Salt(Name);
// This RNG is guaranteed to produce the same random stream only
// when the Module ID and thus the input filename is the same. This
// might be problematic if the input filename extension changes
// (e.g. from .c to .bc or .ll).
//
// We could store this salt in NamedMetadata, but this would make
// the parameter non-const. This would unfortunately make this
// interface unusable by any Machine passes, since they only have a
// const reference to their IR Module. Alternatively we can always
// store salt metadata from the Module constructor.
Salt += sys::path::filename(getModuleIdentifier());
return std::unique_ptr<RandomNumberGenerator>(
new RandomNumberGenerator(Salt));
}
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
GlobalValue *Module::getNamedValue(StringRef Name) const {
return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned Module::getMDKindID(StringRef Name) const {
return Context.getMDKindID(Name);
}
/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
/// so it is filled in as an empty string.
void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
return Context.getMDKindNames(Result);
}
void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
return Context.getOperandBundleTags(Result);
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return
// it. This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
AttributeList AttributeList) {
// See if we have a definition for the specified function already.
GlobalValue *F = getNamedValue(Name);
if (!F) {
// Nope, add it
Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
DL.getProgramAddressSpace(), Name);
if (!New->isIntrinsic()) // Intrinsics get attrs set on construction
New->setAttributes(AttributeList);
FunctionList.push_back(New);
return {Ty, New}; // Return the new prototype.
}
// If the function exists but has the wrong type, return a bitcast to the
// right type.
auto *PTy = PointerType::get(Ty, F->getAddressSpace());
if (F->getType() != PTy)
return {Ty, ConstantExpr::getBitCast(F, PTy)};
// Otherwise, we just found the existing function or a prototype.
return {Ty, F};
}
FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
return getOrInsertFunction(Name, Ty, AttributeList());
}
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *Module::getFunction(StringRef Name) const {
return dyn_cast_or_null<Function>(getNamedValue(Name));
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table. If it does not exist, return null. The type argument
/// should be the underlying type of the global, i.e., it should not have
/// the top-level PointerType, which represents the address of the global.
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
GlobalVariable *Module::getGlobalVariable(StringRef Name,
bool AllowLocal) const {
if (GlobalVariable *Result =
dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
if (AllowLocal || !Result->hasLocalLinkage())
return Result;
return nullptr;
}
/// getOrInsertGlobal - Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct declaration, return the
/// existing global.
Constant *Module::getOrInsertGlobal(
StringRef Name, Type *Ty,
function_ref<GlobalVariable *()> CreateGlobalCallback) {
// See if we have a definition for the specified global already.
GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
if (!GV)
GV = CreateGlobalCallback();
assert(GV && "The CreateGlobalCallback is expected to create a global");
// If the variable exists but has the wrong type, return a bitcast to the
// right type.
Type *GVTy = GV->getType();
PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
if (GVTy != PTy)
return ConstantExpr::getBitCast(GV, PTy);
// Otherwise, we just found the existing function or a prototype.
return GV;
}
// Overload to construct a global variable using its constructor's defaults.
Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
return getOrInsertGlobal(Name, Ty, [&] {
return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
nullptr, Name);
});
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
GlobalAlias *Module::getNamedAlias(StringRef Name) const {
return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}
GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
}
/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
SmallString<256> NameData;
StringRef NameRef = Name.toStringRef(NameData);
return NamedMDSymTab.lookup(NameRef);
}
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
NamedMDNode *&NMD = NamedMDSymTab[Name];
if (!NMD) {
NMD = new NamedMDNode(Name);
NMD->setParent(this);
NamedMDList.push_back(NMD);
}
return NMD;
}
/// eraseNamedMetadata - Remove the given NamedMDNode from this module and
/// delete it.
void Module::eraseNamedMetadata(NamedMDNode *NMD) {
NamedMDSymTab.erase(NMD->getName());
NamedMDList.erase(NMD->getIterator());
}
bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
uint64_t Val = Behavior->getLimitedValue();
if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
MFB = static_cast<ModFlagBehavior>(Val);
return true;
}
}
return false;
}
bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
MDString *&Key, Metadata *&Val) {
if (ModFlag.getNumOperands() < 3)
return false;
if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB))
return false;
MDString *K = dyn_cast_or_null<MDString>(ModFlag.getOperand(1));
if (!K)
return false;
Key = K;
Val = ModFlag.getOperand(2);
return true;
}
/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
const NamedMDNode *ModFlags = getModuleFlagsMetadata();
if (!ModFlags) return;
for (const MDNode *Flag : ModFlags->operands()) {
ModFlagBehavior MFB;
MDString *Key = nullptr;
Metadata *Val = nullptr;
if (isValidModuleFlag(*Flag, MFB, Key, Val)) {
// Check the operands of the MDNode before accessing the operands.
// The verifier will actually catch these failures.
Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
}
}
}
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Metadata *Module::getModuleFlag(StringRef Key) const {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
getModuleFlagsMetadata(ModuleFlags);
for (const ModuleFlagEntry &MFE : ModuleFlags) {
if (Key == MFE.Key->getString())
return MFE.Val;
}
return nullptr;
}
/// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. This method returns null if there are no
/// module-level flags.
NamedMDNode *Module::getModuleFlagsMetadata() const {
return getNamedMetadata("llvm.module.flags");
}
/// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. If module-level flags aren't found, it
/// creates the named metadata that contains them.
NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
return getOrInsertNamedMetadata("llvm.module.flags");
}
/// addModuleFlag - Add a module-level flag to the module-level flags
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Metadata *Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
Metadata *Ops[3] = {
ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
MDString::get(Context, Key), Val};
getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Constant *Val) {
addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
uint32_t Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
}
void Module::addModuleFlag(MDNode *Node) {
assert(Node->getNumOperands() == 3 &&
"Invalid number of operands for module flag!");
assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
isa<MDString>(Node->getOperand(1)) &&
"Invalid operand types for module flag!");
getOrInsertModuleFlagsMetadata()->addOperand(Node);
}
void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Metadata *Val) {
NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata();
// Replace the flag if it already exists.
for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
MDNode *Flag = ModFlags->getOperand(I);
ModFlagBehavior MFB;
MDString *K = nullptr;
Metadata *V = nullptr;
if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) {
Flag->replaceOperandWith(2, Val);
return;
}
}
addModuleFlag(Behavior, Key, Val);
}
void Module::setDataLayout(StringRef Desc) {
DL.reset(Desc);
}
void Module::setDataLayout(const DataLayout &Other) { DL = Other; }
const DataLayout &Module::getDataLayout() const { return DL; }
DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
return cast<DICompileUnit>(CUs->getOperand(Idx));
}
DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
return cast<DICompileUnit>(CUs->getOperand(Idx));
}
void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
while (CUs && (Idx < CUs->getNumOperands()) &&
((*this)->getEmissionKind() == DICompileUnit::NoDebug))
++Idx;
}
iterator_range<Module::global_object_iterator> Module::global_objects() {
return concat<GlobalObject>(functions(), globals());
}
iterator_range<Module::const_global_object_iterator>
Module::global_objects() const {
return concat<const GlobalObject>(functions(), globals());
}
iterator_range<Module::global_value_iterator> Module::global_values() {
return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
iterator_range<Module::const_global_value_iterator>
Module::global_values() const {
return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
void Module::setMaterializer(GVMaterializer *GVM) {
assert(!Materializer &&
"Module already has a GVMaterializer. Call materializeAll"
" to clear it out before setting another one.");
Materializer.reset(GVM);
}
Error Module::materialize(GlobalValue *GV) {
if (!Materializer)
return Error::success();
return Materializer->materialize(GV);
}
Error Module::materializeAll() {
if (!Materializer)
return Error::success();
std::unique_ptr<GVMaterializer> M = std::move(Materializer);
return M->materializeModule();
}
Error Module::materializeMetadata() {
if (!Materializer)
return Error::success();
return Materializer->materializeMetadata();
}
//===----------------------------------------------------------------------===//
// Other module related stuff.
//
std::vector<StructType *> Module::getIdentifiedStructTypes() const {
// If we have a materializer, it is possible that some unread function
// uses a type that is currently not visible to a TypeFinder, so ask
// the materializer which types it created.
if (Materializer)
return Materializer->getIdentifiedStructTypes();
std::vector<StructType *> Ret;
TypeFinder SrcStructTypes;
SrcStructTypes.run(*this, true);
Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
return Ret;
}
// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining. This allows one to 'delete' a
// whole module at a time, even though there may be circular references... first
// all references are dropped, and all use counts go to zero. Then everything
// is deleted for real. Note that no operations are valid on an object that
// has "dropped all references", except operator delete.
//
void Module::dropAllReferences() {
for (Function &F : *this)
F.dropAllReferences();
for (GlobalVariable &GV : globals())
GV.dropAllReferences();
for (GlobalAlias &GA : aliases())
GA.dropAllReferences();
for (GlobalIFunc &GIF : ifuncs())
GIF.dropAllReferences();
}
unsigned Module::getNumberRegisterParameters() const {
auto *Val =
cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
unsigned Module::getDwarfVersion() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
unsigned Module::getCodeViewFlag() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
if (!Val)
return 0;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
unsigned Module::getInstructionCount() {
unsigned NumInstrs = 0;
for (Function &F : FunctionList)
NumInstrs += F.getInstructionCount();
return NumInstrs;
}
Comdat *Module::getOrInsertComdat(StringRef Name) {
auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
Entry.second.Name = &Entry;
return &Entry.second;
}
PICLevel::Level Module::getPICLevel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
if (!Val)
return PICLevel::NotPIC;
return static_cast<PICLevel::Level>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setPICLevel(PICLevel::Level PL) {
addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL);
}
PIELevel::Level Module::getPIELevel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));
if (!Val)
return PIELevel::Default;
return static_cast<PIELevel::Level>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setPIELevel(PIELevel::Level PL) {
addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
}
Optional<CodeModel::Model> Module::getCodeModel() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));
if (!Val)
return None;
return static_cast<CodeModel::Model>(
cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setCodeModel(CodeModel::Model CL) {
// Linking object files with different code models is undefined behavior
// because the compiler would have to generate additional code (to span
// longer jumps) if a larger code model is used with a smaller one.
// Therefore we will treat attempts to mix code models as an error.
addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
}
void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
if (Kind == ProfileSummary::PSK_CSInstr)
setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
else
setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
}
Metadata *Module::getProfileSummary(bool IsCS) {
return (IsCS ? getModuleFlag("CSProfileSummary")
: getModuleFlag("ProfileSummary"));
}
bool Module::getSemanticInterposition() const {
Metadata *MF = getModuleFlag("SemanticInterposition");
auto *Val = cast_or_null<ConstantAsMetadata>(MF);
if (!Val)
return false;
return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
void Module::setSemanticInterposition(bool SI) {
addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI);
}
bool Module::noSemanticInterposition() const {
// Conservatively require an explicit zero value for now.
Metadata *MF = getModuleFlag("SemanticInterposition");
auto *Val = cast_or_null<ConstantAsMetadata>(MF);
return Val && cast<ConstantInt>(Val->getValue())->getZExtValue() == 0;
}
void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
OwnedMemoryBuffer = std::move(MB);
}
bool Module::getRtLibUseGOT() const {
auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
}
void Module::setRtLibUseGOT() {
addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
}
void Module::setSDKVersion(const VersionTuple &V) {
SmallVector<unsigned, 3> Entries;
Entries.push_back(V.getMajor());
if (auto Minor = V.getMinor()) {
Entries.push_back(*Minor);
if (auto Subminor = V.getSubminor())
Entries.push_back(*Subminor);
// Ignore the 'build' component as it can't be represented in the object
// file.
}
addModuleFlag(ModFlagBehavior::Warning, "SDK Version",
ConstantDataArray::get(Context, Entries));
}
VersionTuple Module::getSDKVersion() const {
auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version"));
if (!CM)
return {};
auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
if (!Arr)
return {};
auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> {
if (Index >= Arr->getNumElements())
return None;
return (unsigned)Arr->getElementAsInteger(Index);
};
auto Major = getVersionComponent(0);
if (!Major)
return {};
VersionTuple Result = VersionTuple(*Major);
if (auto Minor = getVersionComponent(1)) {
Result = VersionTuple(*Major, *Minor);
if (auto Subminor = getVersionComponent(2)) {
Result = VersionTuple(*Major, *Minor, *Subminor);
}
}
return Result;
}
GlobalVariable *llvm::collectUsedGlobalVariables(
const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) {
const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
GlobalVariable *GV = M.getGlobalVariable(Name);
if (!GV || !GV->hasInitializer())
return GV;
const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
for (Value *Op : Init->operands()) {
GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts());
Set.insert(G);
}
return GV;
}
void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) {
if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) {
std::unique_ptr<ProfileSummary> ProfileSummary(
ProfileSummary::getFromMD(SummaryMD));
if (ProfileSummary) {
if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample ||
!ProfileSummary->isPartialProfile())
return;
uint64_t BlockCount = Index.getBlockCount();
uint32_t NumCounts = ProfileSummary->getNumCounts();
if (!NumCounts)
return;
double Ratio = (double)BlockCount / NumCounts;
ProfileSummary->setPartialProfileRatio(Ratio);
setProfileSummary(ProfileSummary->getMD(getContext()),
ProfileSummary::PSK_Sample);
}
}
}