1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Hexagon/HexagonInstrInfo.cpp
Simon Moll a84333d938 [NFC] unsigned->Register in storeRegTo/loadRegFromStack
Summary:
This patch makes progress on the 'unsigned -> Register' rewrite for
`TargetInstrInfo::loadRegFromStack` and `TII::storeRegToStack`.

Reviewers: arsenm, craig.topper, uweigand, jpienaar, atanasyan, venkatra, robertlytton, dylanmckay, t.p.northover, kparzysz, tstellar, k-ishizaka

Reviewed By: arsenm

Subscribers: wuzish, merge_guards_bot, jyknight, sdardis, nemanjai, jvesely, wdng, nhaehnle, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73870
2020-02-03 14:22:16 +01:00

4636 lines
160 KiB
C++

//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "Hexagon.h"
#include "HexagonFrameLowering.h"
#include "HexagonHazardRecognizer.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <string>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "hexagon-instrinfo"
#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRMAP_INFO
#include "HexagonDepTimingClasses.h"
#include "HexagonGenDFAPacketizer.inc"
#include "HexagonGenInstrInfo.inc"
cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
"packetization boundary."));
static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Disable schedule adjustment for new value stores."));
static cl::opt<bool> EnableTimingClassLatency(
"enable-timing-class-latency", cl::Hidden, cl::init(false),
cl::desc("Enable timing class latency"));
static cl::opt<bool> EnableALUForwarding(
"enable-alu-forwarding", cl::Hidden, cl::init(true),
cl::desc("Enable vec alu forwarding"));
static cl::opt<bool> EnableACCForwarding(
"enable-acc-forwarding", cl::Hidden, cl::init(true),
cl::desc("Enable vec acc forwarding"));
static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
cl::init(true), cl::Hidden, cl::ZeroOrMore,
cl::desc("Use the DFA based hazard recognizer."));
/// Constants for Hexagon instructions.
const int Hexagon_MEMW_OFFSET_MAX = 4095;
const int Hexagon_MEMW_OFFSET_MIN = -4096;
const int Hexagon_MEMD_OFFSET_MAX = 8191;
const int Hexagon_MEMD_OFFSET_MIN = -8192;
const int Hexagon_MEMH_OFFSET_MAX = 2047;
const int Hexagon_MEMH_OFFSET_MIN = -2048;
const int Hexagon_MEMB_OFFSET_MAX = 1023;
const int Hexagon_MEMB_OFFSET_MIN = -1024;
const int Hexagon_ADDI_OFFSET_MAX = 32767;
const int Hexagon_ADDI_OFFSET_MIN = -32768;
// Pin the vtable to this file.
void HexagonInstrInfo::anchor() {}
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
Subtarget(ST) {}
namespace llvm {
namespace HexagonFUnits {
bool isSlot0Only(unsigned units);
}
}
static bool isIntRegForSubInst(unsigned Reg) {
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
}
static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
}
/// Calculate number of instructions excluding the debug instructions.
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
MachineBasicBlock::const_instr_iterator MIE) {
unsigned Count = 0;
for (; MIB != MIE; ++MIB) {
if (!MIB->isDebugInstr())
++Count;
}
return Count;
}
/// Find the hardware loop instruction used to set-up the specified loop.
/// On Hexagon, we have two instructions used to set-up the hardware loop
/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
/// to indicate the end of a loop.
MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
unsigned EndLoopOp, MachineBasicBlock *TargetBB,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
unsigned LOOPi;
unsigned LOOPr;
if (EndLoopOp == Hexagon::ENDLOOP0) {
LOOPi = Hexagon::J2_loop0i;
LOOPr = Hexagon::J2_loop0r;
} else { // EndLoopOp == Hexagon::EndLOOP1
LOOPi = Hexagon::J2_loop1i;
LOOPr = Hexagon::J2_loop1r;
}
// The loop set-up instruction will be in a predecessor block
for (MachineBasicBlock *PB : BB->predecessors()) {
// If this has been visited, already skip it.
if (!Visited.insert(PB).second)
continue;
if (PB == BB)
continue;
for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
unsigned Opc = I->getOpcode();
if (Opc == LOOPi || Opc == LOOPr)
return &*I;
// We've reached a different loop, which means the loop01 has been
// removed.
if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
return nullptr;
}
// Check the predecessors for the LOOP instruction.
if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
return Loop;
}
return nullptr;
}
/// Gather register def/uses from MI.
/// This treats possible (predicated) defs as actually happening ones
/// (conservatively).
static inline void parseOperands(const MachineInstr &MI,
SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
Defs.clear();
Uses.clear();
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isUse())
Uses.push_back(MO.getReg());
if (MO.isDef())
Defs.push_back(MO.getReg());
}
}
// Position dependent, so check twice for swap.
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
switch (Ga) {
case HexagonII::HSIG_None:
default:
return false;
case HexagonII::HSIG_L1:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_L2:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_S1:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_S2:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_A:
return (Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_Compound:
return (Gb == HexagonII::HSIG_Compound);
}
return false;
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
switch (MI.getOpcode()) {
default:
break;
case Hexagon::L2_loadri_io:
case Hexagon::L2_loadrd_io:
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vL32b_nt_ai:
case Hexagon::V6_vL32Ub_ai:
case Hexagon::LDriw_pred:
case Hexagon::LDriw_ctr:
case Hexagon::PS_vloadrq_ai:
case Hexagon::PS_vloadrw_ai:
case Hexagon::PS_vloadrw_nt_ai: {
const MachineOperand OpFI = MI.getOperand(1);
if (!OpFI.isFI())
return 0;
const MachineOperand OpOff = MI.getOperand(2);
if (!OpOff.isImm() || OpOff.getImm() != 0)
return 0;
FrameIndex = OpFI.getIndex();
return MI.getOperand(0).getReg();
}
case Hexagon::L2_ploadrit_io:
case Hexagon::L2_ploadrif_io:
case Hexagon::L2_ploadrdt_io:
case Hexagon::L2_ploadrdf_io: {
const MachineOperand OpFI = MI.getOperand(2);
if (!OpFI.isFI())
return 0;
const MachineOperand OpOff = MI.getOperand(3);
if (!OpOff.isImm() || OpOff.getImm() != 0)
return 0;
FrameIndex = OpFI.getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
switch (MI.getOpcode()) {
default:
break;
case Hexagon::S2_storerb_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerd_io:
case Hexagon::V6_vS32b_ai:
case Hexagon::V6_vS32Ub_ai:
case Hexagon::STriw_pred:
case Hexagon::STriw_ctr:
case Hexagon::PS_vstorerq_ai:
case Hexagon::PS_vstorerw_ai: {
const MachineOperand &OpFI = MI.getOperand(0);
if (!OpFI.isFI())
return 0;
const MachineOperand &OpOff = MI.getOperand(1);
if (!OpOff.isImm() || OpOff.getImm() != 0)
return 0;
FrameIndex = OpFI.getIndex();
return MI.getOperand(2).getReg();
}
case Hexagon::S2_pstorerbt_io:
case Hexagon::S2_pstorerbf_io:
case Hexagon::S2_pstorerht_io:
case Hexagon::S2_pstorerhf_io:
case Hexagon::S2_pstorerit_io:
case Hexagon::S2_pstorerif_io:
case Hexagon::S2_pstorerdt_io:
case Hexagon::S2_pstorerdf_io: {
const MachineOperand &OpFI = MI.getOperand(1);
if (!OpFI.isFI())
return 0;
const MachineOperand &OpOff = MI.getOperand(2);
if (!OpOff.isImm() || OpOff.getImm() != 0)
return 0;
FrameIndex = OpFI.getIndex();
return MI.getOperand(3).getReg();
}
}
return 0;
}
/// This function checks if the instruction or bundle of instructions
/// has load from stack slot and returns frameindex and machine memory
/// operand of that instruction if true.
bool HexagonInstrInfo::hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
if (MI.isBundle()) {
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
return true;
return false;
}
return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
}
/// This function checks if the instruction or bundle of instructions
/// has store to stack slot and returns frameindex and machine memory
/// operand of that instruction if true.
bool HexagonInstrInfo::hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
if (MI.isBundle()) {
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
return true;
return false;
}
return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
}
/// This function can analyze one/two way branching only and should (mostly) be
/// called by target independent side.
/// First entry is always the opcode of the branching instruction, except when
/// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
/// e.g. Jump_c p will have
/// Cond[0] = Jump_c
/// Cond[1] = p
/// HW-loop ENDLOOP:
/// Cond[0] = ENDLOOP
/// Cond[1] = MBB
/// New value jump:
/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
/// Cond[1] = R
/// Cond[2] = Imm
bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
TBB = nullptr;
FBB = nullptr;
Cond.clear();
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::instr_iterator I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
// A basic block may looks like this:
//
// [ insn
// EH_LABEL
// insn
// insn
// insn
// EH_LABEL
// insn ]
//
// It has two succs but does not have a terminator
// Don't know how to handle it.
do {
--I;
if (I->isEHLabel())
// Don't analyze EH branches.
return true;
} while (I != MBB.instr_begin());
I = MBB.instr_end();
--I;
while (I->isDebugInstr()) {
if (I == MBB.instr_begin())
return false;
--I;
}
bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
I->getOperand(0).isMBB();
// Delete the J2_jump if it's equivalent to a fall-through.
if (AllowModify && JumpToBlock &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
I->eraseFromParent();
I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
--I;
}
if (!isUnpredicatedTerminator(*I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = &*I;
MachineInstr *SecondLastInst = nullptr;
// Find one more terminator if present.
while (true) {
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
if (!SecondLastInst)
SecondLastInst = &*I;
else
// This is a third branch.
return true;
}
if (I == MBB.instr_begin())
break;
--I;
}
int LastOpcode = LastInst->getOpcode();
int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
// If the branch target is not a basic block, it could be a tail call.
// (It is, if the target is a function.)
if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
return true;
if (SecLastOpcode == Hexagon::J2_jump &&
!SecondLastInst->getOperand(0).isMBB())
return true;
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
return true;
// If there is only one terminator instruction, process it.
if (LastInst && !SecondLastInst) {
if (LastOpcode == Hexagon::J2_jump) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
if (isEndLoopN(LastOpcode)) {
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
return false;
}
if (LastOpcodeHasJMP_c) {
TBB = LastInst->getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
return false;
}
// Only supporting rr/ri versions of new-value jumps.
if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
TBB = LastInst->getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
Cond.push_back(LastInst->getOperand(1));
return false;
}
LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
<< " with one jump\n";);
// Otherwise, don't know what this is.
return true;
}
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
if (!SecondLastInst->getOperand(1).isMBB())
return true;
TBB = SecondLastInst->getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// Only supporting rr/ri versions of new-value jumps.
if (SecLastOpcodeHasNVJump &&
(SecondLastInst->getNumExplicitOperands() == 3) &&
(LastOpcode == Hexagon::J2_jump)) {
TBB = SecondLastInst->getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
Cond.push_back(SecondLastInst->getOperand(1));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
// executed, so remove it.
if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst->getIterator();
if (AllowModify)
I->eraseFromParent();
return false;
}
// If the block ends with an ENDLOOP, and J2_jump, handle it.
if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
<< " with two jumps";);
// Otherwise, can't handle this.
return true;
}
unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
// Only removing branches from end of MBB.
if (!I->isBranch())
return Count;
if (Count && (I->getOpcode() == Hexagon::J2_jump))
llvm_unreachable("Malformed basic block: unconditional branch not last");
MBB.erase(&MBB.back());
I = MBB.end();
++Count;
}
return Count;
}
unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
unsigned BOpc = Hexagon::J2_jump;
unsigned BccOpc = Hexagon::J2_jumpt;
assert(validateBranchCond(Cond) && "Invalid branching condition");
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert(!BytesAdded && "code size not handled");
// Check if reverseBranchCondition has asked to reverse this branch
// If we want to reverse the branch an odd number of times, we want
// J2_jumpf.
if (!Cond.empty() && Cond[0].isImm())
BccOpc = Cond[0].getImm();
if (!FBB) {
if (Cond.empty()) {
// Due to a bug in TailMerging/CFG Optimization, we need to add a
// special case handling of a predicated jump followed by an
// unconditional jump. If not, Tail Merging and CFG Optimization go
// into an infinite loop.
MachineBasicBlock *NewTBB, *NewFBB;
SmallVector<MachineOperand, 4> Cond;
auto Term = MBB.getFirstTerminator();
if (Term != MBB.end() && isPredicated(*Term) &&
!analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
reverseBranchCondition(Cond);
removeBranch(MBB);
return insertBranch(MBB, TBB, nullptr, Cond, DL);
}
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
} else if (isEndLoopN(Cond[0].getImm())) {
int EndLoopOp = Cond[0].getImm();
assert(Cond[1].isMBB());
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
// Check for it, and change the BB target if needed.
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
VisitedBBs);
assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
Loop->getOperand(0).setMBB(TBB);
// Add the ENDLOOP after the finding the LOOP0.
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
} else if (isNewValueJump(Cond[0].getImm())) {
assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
// New value jump
// (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
// (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
<< printMBBReference(MBB););
if (Cond[2].isReg()) {
unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
} else if(Cond[2].isImm()) {
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
addImm(Cond[2].getImm()).addMBB(TBB);
} else
llvm_unreachable("Invalid condition for branching");
} else {
assert((Cond.size() == 2) && "Malformed cond vector");
const MachineOperand &RO = Cond[1];
unsigned Flags = getUndefRegState(RO.isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
}
return 1;
}
assert((!Cond.empty()) &&
"Cond. cannot be empty when multiple branchings are required");
assert((!isNewValueJump(Cond[0].getImm())) &&
"NV-jump cannot be inserted with another branch");
// Special case for hardware loops. The condition is a basic block.
if (isEndLoopN(Cond[0].getImm())) {
int EndLoopOp = Cond[0].getImm();
assert(Cond[1].isMBB());
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
// Check for it, and change the BB target if needed.
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
VisitedBBs);
assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
Loop->getOperand(0).setMBB(TBB);
// Add the ENDLOOP after the finding the LOOP0.
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
} else {
const MachineOperand &RO = Cond[1];
unsigned Flags = getUndefRegState(RO.isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
}
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
return 2;
}
namespace {
class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
MachineInstr *Loop, *EndLoop;
MachineFunction *MF;
const HexagonInstrInfo *TII;
int64_t TripCount;
Register LoopCount;
DebugLoc DL;
public:
HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
: Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
DL(Loop->getDebugLoc()) {
// Inspect the Loop instruction up-front, as it may be deleted when we call
// createTripCountGreaterCondition.
TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
? -1
: Loop->getOperand(1).getImm();
if (TripCount == -1)
LoopCount = Loop->getOperand(1).getReg();
}
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
// Only ignore the terminator.
return MI == EndLoop;
}
Optional<bool>
createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
SmallVectorImpl<MachineOperand> &Cond) override {
if (TripCount == -1) {
// Check if we're done with the loop.
unsigned Done = TII->createVR(MF, MVT::i1);
MachineInstr *NewCmp = BuildMI(&MBB, DL,
TII->get(Hexagon::C2_cmpgtui), Done)
.addReg(LoopCount)
.addImm(TC);
Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
Cond.push_back(NewCmp->getOperand(0));
return {};
}
return TripCount > TC;
}
void setPreheader(MachineBasicBlock *NewPreheader) override {
NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
Loop);
}
void adjustTripCount(int TripCountAdjust) override {
// If the loop trip count is a compile-time value, then just change the
// value.
if (Loop->getOpcode() == Hexagon::J2_loop0i ||
Loop->getOpcode() == Hexagon::J2_loop1i) {
int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
assert(TripCount > 0 && "Can't create an empty or negative loop!");
Loop->getOperand(1).setImm(TripCount);
return;
}
// The loop trip count is a run-time value. We generate code to subtract
// one from the trip count, and update the loop instruction.
Register LoopCount = Loop->getOperand(1).getReg();
Register NewLoopCount = TII->createVR(MF, MVT::i32);
BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
TII->get(Hexagon::A2_addi), NewLoopCount)
.addReg(LoopCount)
.addImm(TripCountAdjust);
Loop->getOperand(1).setReg(NewLoopCount);
}
void disposed() override { Loop->eraseFromParent(); }
};
} // namespace
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
// We really "analyze" only hardware loops right now.
MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
MachineInstr *LoopInst = findLoopInstr(
LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
if (LoopInst)
return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
}
return nullptr;
}
bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles, unsigned ExtraPredCycles,
BranchProbability Probability) const {
return nonDbgBBSize(&MBB) <= 3;
}
bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
const {
return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
}
bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
unsigned NumInstrs, BranchProbability Probability) const {
return NumInstrs <= 4;
}
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
unsigned KillFlag = getKillRegState(KillSrc);
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
// Map Pd = Ps to Pd = or(Ps, Ps).
BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
.addReg(SrcReg).addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::IntRegsRegClass.contains(DestReg) &&
Hexagon::CtrRegsRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::ModRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
Hexagon::IntRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
Hexagon::PredRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
Hexagon::IntRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
Register LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
Register HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
.addReg(HiSrc, KillFlag)
.addReg(LoSrc, KillFlag);
return;
}
if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
.addReg(SrcReg)
.addReg(SrcReg, KillFlag);
return;
}
if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
Hexagon::HvxVRRegClass.contains(DestReg)) {
llvm_unreachable("Unimplemented pred to vec");
return;
}
if (Hexagon::HvxQRRegClass.contains(DestReg) &&
Hexagon::HvxVRRegClass.contains(SrcReg)) {
llvm_unreachable("Unimplemented vec to pred");
return;
}
#ifndef NDEBUG
// Show the invalid registers to ease debugging.
dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
<< printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
#endif
llvm_unreachable("Unimplemented");
}
void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned SlotAlign = MFI.getObjectAlignment(FI);
unsigned KillFlag = getKillRegState(isKill);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
MFI.getObjectSize(FI), SlotAlign);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, KillFlag).addMemOperand(MMO);
} else {
llvm_unreachable("Unimplemented");
}
}
void HexagonInstrInfo::loadRegFromStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg,
int FI, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned SlotAlign = MFI.getObjectAlignment(FI);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), SlotAlign);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else {
llvm_unreachable("Can't store this register to stack slot");
}
}
static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
const MachineBasicBlock &B = *MI.getParent();
Regs.addLiveOuts(B);
auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
for (auto I = B.rbegin(); I != E; ++I)
Regs.stepBackward(*I);
}
/// expandPostRAPseudo - This function is called for all pseudo instructions
/// that remain after register allocation. Many pseudo instructions are
/// created to help register allocation. This is the place to convert them
/// into real instructions. The target can edit MI in place, or it can insert
/// new instructions and erase MI. The function should return true if
/// anything was changed.
bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
Register Mx = MI.getOperand(MxOp).getReg();
unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
.add(MI.getOperand((HasImm ? 5 : 4)));
auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
.add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
if (HasImm)
MIB.add(MI.getOperand(4));
MIB.addReg(CSx, RegState::Implicit);
MBB.erase(MI);
return true;
};
auto UseAligned = [&] (const MachineInstr &MI, unsigned NeedAlign) {
if (MI.memoperands().empty())
return false;
return all_of(MI.memoperands(),
[NeedAlign] (const MachineMemOperand *MMO) {
return NeedAlign <= MMO->getAlignment();
});
};
switch (Opc) {
case TargetOpcode::COPY: {
MachineOperand &MD = MI.getOperand(0);
MachineOperand &MS = MI.getOperand(1);
MachineBasicBlock::iterator MBBI = MI.getIterator();
if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
}
MBB.erase(MBBI);
return true;
}
case Hexagon::PS_aligna:
BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
.addReg(HRI.getFrameRegister())
.addImm(-MI.getOperand(1).getImm());
MBB.erase(MI);
return true;
case Hexagon::V6_vassignp: {
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
.addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
.addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
MBB.erase(MI);
return true;
}
case Hexagon::V6_lo: {
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
MBB.erase(MI);
MRI.clearKillFlags(SrcSubLo);
return true;
}
case Hexagon::V6_hi: {
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
MBB.erase(MI);
MRI.clearKillFlags(SrcSubHi);
return true;
}
case Hexagon::PS_vloadrv_ai: {
Register DstReg = MI.getOperand(0).getReg();
const MachineOperand &BaseOp = MI.getOperand(1);
assert(BaseOp.getSubReg() == 0);
int Offset = MI.getOperand(2).getImm();
unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
: Hexagon::V6_vL32Ub_ai;
BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
.addReg(BaseOp.getReg(), getRegState(BaseOp))
.addImm(Offset)
.cloneMemRefs(MI);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vloadrw_ai: {
Register DstReg = MI.getOperand(0).getReg();
const MachineOperand &BaseOp = MI.getOperand(1);
assert(BaseOp.getSubReg() == 0);
int Offset = MI.getOperand(2).getImm();
unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
: Hexagon::V6_vL32Ub_ai;
BuildMI(MBB, MI, DL, get(NewOpc),
HRI.getSubReg(DstReg, Hexagon::vsub_lo))
.addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
.addImm(Offset)
.cloneMemRefs(MI);
BuildMI(MBB, MI, DL, get(NewOpc),
HRI.getSubReg(DstReg, Hexagon::vsub_hi))
.addReg(BaseOp.getReg(), getRegState(BaseOp))
.addImm(Offset + VecOffset)
.cloneMemRefs(MI);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vstorerv_ai: {
const MachineOperand &SrcOp = MI.getOperand(2);
assert(SrcOp.getSubReg() == 0);
const MachineOperand &BaseOp = MI.getOperand(0);
assert(BaseOp.getSubReg() == 0);
int Offset = MI.getOperand(1).getImm();
unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
: Hexagon::V6_vS32Ub_ai;
BuildMI(MBB, MI, DL, get(NewOpc))
.addReg(BaseOp.getReg(), getRegState(BaseOp))
.addImm(Offset)
.addReg(SrcOp.getReg(), getRegState(SrcOp))
.cloneMemRefs(MI);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vstorerw_ai: {
Register SrcReg = MI.getOperand(2).getReg();
const MachineOperand &BaseOp = MI.getOperand(0);
assert(BaseOp.getSubReg() == 0);
int Offset = MI.getOperand(1).getImm();
unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
: Hexagon::V6_vS32Ub_ai;
BuildMI(MBB, MI, DL, get(NewOpc))
.addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
.addImm(Offset)
.addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
.cloneMemRefs(MI);
BuildMI(MBB, MI, DL, get(NewOpc))
.addReg(BaseOp.getReg(), getRegState(BaseOp))
.addImm(Offset + VecOffset)
.addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
.cloneMemRefs(MI);
MBB.erase(MI);
return true;
}
case Hexagon::PS_true: {
Register Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::PS_false: {
Register Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::PS_qtrue: {
BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
.addReg(Hexagon::V0, RegState::Undef)
.addReg(Hexagon::V0, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::PS_qfalse: {
BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
.addReg(Hexagon::V0, RegState::Undef)
.addReg(Hexagon::V0, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vdd0: {
Register Vd = MI.getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
.addReg(Vd, RegState::Undef)
.addReg(Vd, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vmulw: {
// Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
Register DstReg = MI.getOperand(0).getReg();
Register Src1Reg = MI.getOperand(1).getReg();
Register Src2Reg = MI.getOperand(2).getReg();
Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
HRI.getSubReg(DstReg, Hexagon::isub_hi))
.addReg(Src1SubHi)
.addReg(Src2SubHi);
BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
HRI.getSubReg(DstReg, Hexagon::isub_lo))
.addReg(Src1SubLo)
.addReg(Src2SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
MRI.clearKillFlags(Src1SubLo);
MRI.clearKillFlags(Src2SubHi);
MRI.clearKillFlags(Src2SubLo);
return true;
}
case Hexagon::PS_vmulw_acc: {
// Expand 64-bit vector multiply with addition into 2 scalar multiplies.
Register DstReg = MI.getOperand(0).getReg();
Register Src1Reg = MI.getOperand(1).getReg();
Register Src2Reg = MI.getOperand(2).getReg();
Register Src3Reg = MI.getOperand(3).getReg();
Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
HRI.getSubReg(DstReg, Hexagon::isub_hi))
.addReg(Src1SubHi)
.addReg(Src2SubHi)
.addReg(Src3SubHi);
BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
HRI.getSubReg(DstReg, Hexagon::isub_lo))
.addReg(Src1SubLo)
.addReg(Src2SubLo)
.addReg(Src3SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
MRI.clearKillFlags(Src1SubLo);
MRI.clearKillFlags(Src2SubHi);
MRI.clearKillFlags(Src2SubLo);
MRI.clearKillFlags(Src3SubHi);
MRI.clearKillFlags(Src3SubLo);
return true;
}
case Hexagon::PS_pselect: {
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
const MachineOperand &Op2 = MI.getOperand(2);
const MachineOperand &Op3 = MI.getOperand(3);
Register Rd = Op0.getReg();
Register Pu = Op1.getReg();
Register Rs = Op2.getReg();
Register Rt = Op3.getReg();
DebugLoc DL = MI.getDebugLoc();
unsigned K1 = getKillRegState(Op1.isKill());
unsigned K2 = getKillRegState(Op2.isKill());
unsigned K3 = getKillRegState(Op3.isKill());
if (Rd != Rs)
BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
.addReg(Pu, (Rd == Rt) ? K1 : 0)
.addReg(Rs, K2);
if (Rd != Rt)
BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
.addReg(Pu, K1)
.addReg(Rt, K3);
MBB.erase(MI);
return true;
}
case Hexagon::PS_vselect: {
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
const MachineOperand &Op2 = MI.getOperand(2);
const MachineOperand &Op3 = MI.getOperand(3);
LivePhysRegs LiveAtMI(HRI);
getLiveRegsAt(LiveAtMI, MI);
bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
Register PReg = Op1.getReg();
assert(Op1.getSubReg() == 0);
unsigned PState = getRegState(Op1);
if (Op0.getReg() != Op2.getReg()) {
unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
: PState;
auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
.add(Op0)
.addReg(PReg, S)
.add(Op2);
if (IsDestLive)
T.addReg(Op0.getReg(), RegState::Implicit);
IsDestLive = true;
}
if (Op0.getReg() != Op3.getReg()) {
auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
.add(Op0)
.addReg(PReg, PState)
.add(Op3);
if (IsDestLive)
T.addReg(Op0.getReg(), RegState::Implicit);
}
MBB.erase(MI);
return true;
}
case Hexagon::PS_wselect: {
MachineOperand &Op0 = MI.getOperand(0);
MachineOperand &Op1 = MI.getOperand(1);
MachineOperand &Op2 = MI.getOperand(2);
MachineOperand &Op3 = MI.getOperand(3);
LivePhysRegs LiveAtMI(HRI);
getLiveRegsAt(LiveAtMI, MI);
bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
Register PReg = Op1.getReg();
assert(Op1.getSubReg() == 0);
unsigned PState = getRegState(Op1);
if (Op0.getReg() != Op2.getReg()) {
unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
: PState;
Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
.add(Op0)
.addReg(PReg, S)
.addReg(SrcHi)
.addReg(SrcLo);
if (IsDestLive)
T.addReg(Op0.getReg(), RegState::Implicit);
IsDestLive = true;
}
if (Op0.getReg() != Op3.getReg()) {
Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
.add(Op0)
.addReg(PReg, PState)
.addReg(SrcHi)
.addReg(SrcLo);
if (IsDestLive)
T.addReg(Op0.getReg(), RegState::Implicit);
}
MBB.erase(MI);
return true;
}
case Hexagon::PS_crash: {
// Generate a misaligned load that is guaranteed to cause a crash.
class CrashPseudoSourceValue : public PseudoSourceValue {
public:
CrashPseudoSourceValue(const TargetInstrInfo &TII)
: PseudoSourceValue(TargetCustom, TII) {}
bool isConstant(const MachineFrameInfo *) const override {
return false;
}
bool isAliased(const MachineFrameInfo *) const override {
return false;
}
bool mayAlias(const MachineFrameInfo *) const override {
return false;
}
void printCustom(raw_ostream &OS) const override {
OS << "MisalignedCrash";
}
};
static const CrashPseudoSourceValue CrashPSV(*this);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(&CrashPSV),
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1);
BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
.addImm(0xBADC0FEE) // Misaligned load.
.addMemOperand(MMO);
MBB.erase(MI);
return true;
}
case Hexagon::PS_tailcall_i:
MI.setDesc(get(Hexagon::J2_jump));
return true;
case Hexagon::PS_tailcall_r:
case Hexagon::PS_jmpret:
MI.setDesc(get(Hexagon::J2_jumpr));
return true;
case Hexagon::PS_jmprett:
MI.setDesc(get(Hexagon::J2_jumprt));
return true;
case Hexagon::PS_jmpretf:
MI.setDesc(get(Hexagon::J2_jumprf));
return true;
case Hexagon::PS_jmprettnewpt:
MI.setDesc(get(Hexagon::J2_jumprtnewpt));
return true;
case Hexagon::PS_jmpretfnewpt:
MI.setDesc(get(Hexagon::J2_jumprfnewpt));
return true;
case Hexagon::PS_jmprettnew:
MI.setDesc(get(Hexagon::J2_jumprtnew));
return true;
case Hexagon::PS_jmpretfnew:
MI.setDesc(get(Hexagon::J2_jumprfnew));
return true;
case Hexagon::PS_loadrub_pci:
return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadrb_pci:
return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadruh_pci:
return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadrh_pci:
return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadri_pci:
return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadrd_pci:
return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
case Hexagon::PS_loadrub_pcr:
return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_loadrb_pcr:
return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_loadruh_pcr:
return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_loadrh_pcr:
return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_loadri_pcr:
return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_loadrd_pcr:
return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
case Hexagon::PS_storerb_pci:
return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
case Hexagon::PS_storerh_pci:
return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
case Hexagon::PS_storerf_pci:
return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
case Hexagon::PS_storeri_pci:
return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
case Hexagon::PS_storerd_pci:
return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
case Hexagon::PS_storerb_pcr:
return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
case Hexagon::PS_storerh_pcr:
return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
case Hexagon::PS_storerf_pcr:
return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
case Hexagon::PS_storeri_pcr:
return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
case Hexagon::PS_storerd_pcr:
return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
}
return false;
}
MachineBasicBlock::instr_iterator
HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
MachineBasicBlock::iterator First;
switch (Opc) {
case Hexagon::V6_vgathermh_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
case Hexagon::V6_vgathermw_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
case Hexagon::V6_vgathermhw_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
case Hexagon::V6_vgathermhq_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.add(MI.getOperand(4));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
case Hexagon::V6_vgathermwq_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.add(MI.getOperand(4));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
case Hexagon::V6_vgathermhwq_pseudo:
First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.add(MI.getOperand(4));
BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
.add(MI.getOperand(0))
.addImm(0)
.addReg(Hexagon::VTMP);
MBB.erase(MI);
return First.getInstrIterator();
}
return MI.getIterator();
}
// We indicate that we want to reverse the branch by
// inserting the reversed branching opcode.
bool HexagonInstrInfo::reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond.empty())
return true;
assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
unsigned opcode = Cond[0].getImm();
//unsigned temp;
assert(get(opcode).isBranch() && "Should be a branching condition.");
if (isEndLoopN(opcode))
return true;
unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
Cond[0].setImm(NewOpcode);
return false;
}
void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
DebugLoc DL;
BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
}
bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
return getAddrMode(MI) == HexagonII::PostInc;
}
// Returns true if an instruction is predicated irrespective of the predicate
// sense. For example, all of the following will return true.
// if (p0) R1 = add(R2, R3)
// if (!p0) R1 = add(R2, R3)
// if (p0.new) R1 = add(R2, R3)
// if (!p0.new) R1 = add(R2, R3)
// Note: New-value stores are not included here as in the current
// implementation, we don't need to check their predicate sense.
bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
}
bool HexagonInstrInfo::PredicateInstruction(
MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
isEndLoopN(Cond[0].getImm())) {
LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
return false;
}
int Opc = MI.getOpcode();
assert (isPredicable(MI) && "Expected predicable instruction");
bool invertJump = predOpcodeHasNot(Cond);
// We have to predicate MI "in place", i.e. after this function returns,
// MI will need to be transformed into a predicated form. To avoid com-
// plicated manipulations with the operands (handling tied operands,
// etc.), build a new temporary instruction, then overwrite MI with it.
MachineBasicBlock &B = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned PredOpc = getCondOpcode(Opc, invertJump);
MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
unsigned NOp = 0, NumOps = MI.getNumOperands();
while (NOp < NumOps) {
MachineOperand &Op = MI.getOperand(NOp);
if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
break;
T.add(Op);
NOp++;
}
unsigned PredReg, PredRegPos, PredRegFlags;
bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
(void)GotPredReg;
assert(GotPredReg);
T.addReg(PredReg, PredRegFlags);
while (NOp < NumOps)
T.add(MI.getOperand(NOp++));
MI.setDesc(get(PredOpc));
while (unsigned n = MI.getNumOperands())
MI.RemoveOperand(n-1);
for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
MI.addOperand(T->getOperand(i));
MachineBasicBlock::instr_iterator TI = T->getIterator();
B.erase(TI);
MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
MRI.clearKillFlags(PredReg);
return true;
}
bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
// TODO: Fix this
return false;
}
bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
std::vector<MachineOperand> &Pred) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
MachineOperand MO = MI.getOperand(oper);
if (MO.isReg()) {
if (!MO.isDef())
continue;
const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
if (RC == &Hexagon::PredRegsRegClass) {
Pred.push_back(MO);
return true;
}
continue;
} else if (MO.isRegMask()) {
for (unsigned PR : Hexagon::PredRegsRegClass) {
if (!MI.modifiesRegister(PR, &HRI))
continue;
Pred.push_back(MO);
return true;
}
}
}
return false;
}
bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
if (!MI.getDesc().isPredicable())
return false;
if (MI.isCall() || isTailCall(MI)) {
if (!Subtarget.usePredicatedCalls())
return false;
}
// HVX loads are not predicable on v60, but are on v62.
if (!Subtarget.hasV62Ops()) {
switch (MI.getOpcode()) {
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vL32b_pi:
case Hexagon::V6_vL32b_ppu:
case Hexagon::V6_vL32b_cur_ai:
case Hexagon::V6_vL32b_cur_pi:
case Hexagon::V6_vL32b_cur_ppu:
case Hexagon::V6_vL32b_nt_ai:
case Hexagon::V6_vL32b_nt_pi:
case Hexagon::V6_vL32b_nt_ppu:
case Hexagon::V6_vL32b_tmp_ai:
case Hexagon::V6_vL32b_tmp_pi:
case Hexagon::V6_vL32b_tmp_ppu:
case Hexagon::V6_vL32b_nt_cur_ai:
case Hexagon::V6_vL32b_nt_cur_pi:
case Hexagon::V6_vL32b_nt_cur_ppu:
case Hexagon::V6_vL32b_nt_tmp_ai:
case Hexagon::V6_vL32b_nt_tmp_pi:
case Hexagon::V6_vL32b_nt_tmp_ppu:
return false;
}
}
return true;
}
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Debug info is never a scheduling boundary. It's necessary to be explicit
// due to the special treatment of IT instructions below, otherwise a
// dbg_value followed by an IT will result in the IT instruction being
// considered a scheduling hazard, which is wrong. It should be the actual
// instruction preceding the dbg_value instruction(s), just like it is
// when debug info is not present.
if (MI.isDebugInstr())
return false;
// Throwing call is a boundary.
if (MI.isCall()) {
// Don't mess around with no return calls.
if (doesNotReturn(MI))
return true;
// If any of the block's successors is a landing pad, this could be a
// throwing call.
for (auto I : MBB->successors())
if (I->isEHPad())
return true;
}
// Terminators and labels can't be scheduled around.
if (MI.getDesc().isTerminator() || MI.isPosition())
return true;
if (MI.isInlineAsm() && !ScheduleInlineAsm)
return true;
return false;
}
/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
/// Hexagon counts the number of ##'s and adjust for that many
/// constant exenders.
unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
const MCAsmInfo &MAI,
const TargetSubtargetInfo *STI) const {
StringRef AStr(Str);
// Count the number of instructions in the asm.
bool atInsnStart = true;
unsigned Length = 0;
const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
for (; *Str; ++Str) {
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0)
atInsnStart = true;
if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
Length += MaxInstLength;
atInsnStart = false;
}
if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
MAI.getCommentString().size()) == 0)
atInsnStart = false;
}
// Add to size number of constant extenders seen * 4.
StringRef Occ("##");
Length += AStr.count(Occ)*4;
return Length;
}
ScheduleHazardRecognizer*
HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
const InstrItineraryData *II, const ScheduleDAG *DAG) const {
if (UseDFAHazardRec)
return new HexagonHazardRecognizer(II, this, Subtarget);
return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
}
/// For a comparison instruction, return the source registers in
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
unsigned &SrcReg2, int &Mask,
int &Value) const {
unsigned Opc = MI.getOpcode();
// Set mask and the first source register.
switch (Opc) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtup:
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmplte:
case Hexagon::C4_cmplteu:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtui:
case Hexagon::C4_cmpneqi:
case Hexagon::C4_cmplteui:
case Hexagon::C4_cmpltei:
SrcReg = MI.getOperand(1).getReg();
Mask = ~0;
break;
case Hexagon::A4_cmpbeq:
case Hexagon::A4_cmpbgt:
case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpbeqi:
case Hexagon::A4_cmpbgti:
case Hexagon::A4_cmpbgtui:
SrcReg = MI.getOperand(1).getReg();
Mask = 0xFF;
break;
case Hexagon::A4_cmpheq:
case Hexagon::A4_cmphgt:
case Hexagon::A4_cmphgtu:
case Hexagon::A4_cmpheqi:
case Hexagon::A4_cmphgti:
case Hexagon::A4_cmphgtui:
SrcReg = MI.getOperand(1).getReg();
Mask = 0xFFFF;
break;
}
// Set the value/second source register.
switch (Opc) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtup:
case Hexagon::A4_cmpbeq:
case Hexagon::A4_cmpbgt:
case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpheq:
case Hexagon::A4_cmphgt:
case Hexagon::A4_cmphgtu:
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmplte:
case Hexagon::C4_cmplteu:
SrcReg2 = MI.getOperand(2).getReg();
return true;
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgti:
case Hexagon::C4_cmpneqi:
case Hexagon::C4_cmplteui:
case Hexagon::C4_cmpltei:
case Hexagon::A4_cmpbeqi:
case Hexagon::A4_cmpbgti:
case Hexagon::A4_cmpbgtui:
case Hexagon::A4_cmpheqi:
case Hexagon::A4_cmphgti:
case Hexagon::A4_cmphgtui: {
SrcReg2 = 0;
const MachineOperand &Op2 = MI.getOperand(2);
if (!Op2.isImm())
return false;
Value = MI.getOperand(2).getImm();
return true;
}
}
return false;
}
unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost) const {
return getInstrTimingClassLatency(ItinData, MI);
}
DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
const TargetSubtargetInfo &STI) const {
const InstrItineraryData *II = STI.getInstrItineraryData();
return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
}
// Inspired by this pair:
// %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
// S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
// Currently AA considers the addresses in these instructions to be aliasing.
bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
const MachineInstr &MIa, const MachineInstr &MIb) const {
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
return false;
// Instructions that are pure loads, not loads and stores like memops are not
// dependent.
if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
return true;
// Get the base register in MIa.
unsigned BasePosA, OffsetPosA;
if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
return false;
const MachineOperand &BaseA = MIa.getOperand(BasePosA);
Register BaseRegA = BaseA.getReg();
unsigned BaseSubA = BaseA.getSubReg();
// Get the base register in MIb.
unsigned BasePosB, OffsetPosB;
if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
return false;
const MachineOperand &BaseB = MIb.getOperand(BasePosB);
Register BaseRegB = BaseB.getReg();
unsigned BaseSubB = BaseB.getSubReg();
if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
return false;
// Get the access sizes.
unsigned SizeA = getMemAccessSize(MIa);
unsigned SizeB = getMemAccessSize(MIb);
// Get the offsets. Handle immediates only for now.
const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
if (!MIa.getOperand(OffsetPosA).isImm() ||
!MIb.getOperand(OffsetPosB).isImm())
return false;
int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
// This is a mem access with the same base register and known offsets from it.
// Reason about it.
if (OffsetA > OffsetB) {
uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
return SizeB <= OffDiff;
}
if (OffsetA < OffsetB) {
uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
return SizeA <= OffDiff;
}
return false;
}
/// If the instruction is an increment of a constant value, return the amount.
bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
int &Value) const {
if (isPostIncrement(MI)) {
unsigned BasePos = 0, OffsetPos = 0;
if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
return false;
const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
if (OffsetOp.isImm()) {
Value = OffsetOp.getImm();
return true;
}
} else if (MI.getOpcode() == Hexagon::A2_addi) {
const MachineOperand &AddOp = MI.getOperand(2);
if (AddOp.isImm()) {
Value = AddOp.getImm();
return true;
}
}
return false;
}
std::pair<unsigned, unsigned>
HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
TF & HexagonII::MO_Bitmasks);
}
ArrayRef<std::pair<unsigned, const char*>>
HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace HexagonII;
static const std::pair<unsigned, const char*> Flags[] = {
{MO_PCREL, "hexagon-pcrel"},
{MO_GOT, "hexagon-got"},
{MO_LO16, "hexagon-lo16"},
{MO_HI16, "hexagon-hi16"},
{MO_GPREL, "hexagon-gprel"},
{MO_GDGOT, "hexagon-gdgot"},
{MO_GDPLT, "hexagon-gdplt"},
{MO_IE, "hexagon-ie"},
{MO_IEGOT, "hexagon-iegot"},
{MO_TPREL, "hexagon-tprel"}
};
return makeArrayRef(Flags);
}
ArrayRef<std::pair<unsigned, const char*>>
HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
using namespace HexagonII;
static const std::pair<unsigned, const char*> Flags[] = {
{HMOTF_ConstExtended, "hexagon-ext"}
};
return makeArrayRef(Flags);
}
unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *TRC;
if (VT == MVT::i1) {
TRC = &Hexagon::PredRegsRegClass;
} else if (VT == MVT::i32 || VT == MVT::f32) {
TRC = &Hexagon::IntRegsRegClass;
} else if (VT == MVT::i64 || VT == MVT::f64) {
TRC = &Hexagon::DoubleRegsRegClass;
} else {
llvm_unreachable("Cannot handle this register class");
}
Register NewReg = MRI.createVirtualRegister(TRC);
return NewReg;
}
bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
return (getAddrMode(MI) == HexagonII::AbsoluteSet);
}
bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
}
bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
return getAddrMode(MI) == HexagonII::BaseImmOffset;
}
bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
!MI.getDesc().mayStore() &&
MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
!isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
}
// Return true if the instruction is a compund branch instruction.
bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
}
// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
// isFPImm and later getFPImm as well.
bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
if (isExtended) // Instruction must be extended.
return true;
unsigned isExtendable =
(F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
if (!isExtendable)
return false;
if (MI.isCall())
return false;
short ExtOpNum = getCExtOpNum(MI);
const MachineOperand &MO = MI.getOperand(ExtOpNum);
// Use MO operand flags to determine if MO
// has the HMOTF_ConstExtended flag set.
if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
return true;
// If this is a Machine BB address we are talking about, and it is
// not marked as extended, say so.
if (MO.isMBB())
return false;
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
MO.isJTI() || MO.isCPI() || MO.isFPImm())
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int MinValue = getMinValue(MI);
int MaxValue = getMaxValue(MI);
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
}
bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::L4_return:
case Hexagon::L4_return_t:
case Hexagon::L4_return_f:
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_tnew_pt:
case Hexagon::L4_return_fnew_pt:
return true;
}
return false;
}
// Return true when ConsMI uses a register defined by ProdMI.
bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const {
if (!ProdMI.getDesc().getNumDefs())
return false;
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
SmallVector<unsigned, 4> DefsA;
SmallVector<unsigned, 4> DefsB;
SmallVector<unsigned, 8> UsesA;
SmallVector<unsigned, 8> UsesB;
parseOperands(ProdMI, DefsA, UsesA);
parseOperands(ConsMI, DefsB, UsesB);
for (auto &RegA : DefsA)
for (auto &RegB : UsesB) {
// True data dependency.
if (RegA == RegB)
return true;
if (Register::isPhysicalRegister(RegA))
for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
if (RegB == *SubRegs)
return true;
if (Register::isPhysicalRegister(RegB))
for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
if (RegA == *SubRegs)
return true;
}
return false;
}
// Returns true if the instruction is alread a .cur.
bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::V6_vL32b_cur_pi:
case Hexagon::V6_vL32b_cur_ai:
return true;
}
return false;
}
// Returns true, if any one of the operands is a dot new
// insn, whether it is predicated dot new or register dot new.
bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
return true;
return false;
}
/// Symmetrical. See if these two instructions are fit for duplex pair.
bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
const MachineInstr &MIb) const {
HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
}
bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
if (MI.mayLoadOrStore() || MI.isCompare())
return true;
// Multiply
unsigned SchedClass = MI.getDesc().getSchedClass();
return is_TC4x(SchedClass) || is_TC3x(SchedClass);
}
bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
return (Opcode == Hexagon::ENDLOOP0 ||
Opcode == Hexagon::ENDLOOP1);
}
bool HexagonInstrInfo::isExpr(unsigned OpType) const {
switch(OpType) {
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_BlockAddress:
return true;
default:
return false;
}
}
bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
const MCInstrDesc &MID = MI.getDesc();
const uint64_t F = MID.TSFlags;
if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
return true;
// TODO: This is largely obsolete now. Will need to be removed
// in consecutive patches.
switch (MI.getOpcode()) {
// PS_fi and PS_fia remain special cases.
case Hexagon::PS_fi:
case Hexagon::PS_fia:
return true;
default:
return false;
}
return false;
}
// This returns true in two cases:
// - The OP code itself indicates that this is an extended instruction.
// - One of MOs has been marked with HMOTF_ConstExtended flag.
bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
// First check if this is permanently extended op code.
const uint64_t F = MI.getDesc().TSFlags;
if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
return true;
// Use MO operand flags to determine if one of MI's operands
// has HMOTF_ConstExtended flag set.
for (const MachineOperand &MO : MI.operands())
if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
return true;
return false;
}
bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
const uint64_t F = get(Opcode).TSFlags;
return (F >> HexagonII::FPPos) & HexagonII::FPMask;
}
// No V60 HVX VMEM with A_INDIRECT.
bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
const MachineInstr &J) const {
if (!isHVXVec(I))
return false;
if (!I.mayLoad() && !I.mayStore())
return false;
return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
}
bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::J2_callr:
case Hexagon::J2_callrf:
case Hexagon::J2_callrt:
case Hexagon::PS_call_nr:
return true;
}
return false;
}
bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::L4_return:
case Hexagon::L4_return_t:
case Hexagon::L4_return_f:
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_fnew_pt:
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_tnew_pt:
return true;
}
return false;
}
bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::J2_jumpr:
case Hexagon::J2_jumprt:
case Hexagon::J2_jumprf:
case Hexagon::J2_jumprtnewpt:
case Hexagon::J2_jumprfnewpt:
case Hexagon::J2_jumprtnew:
case Hexagon::J2_jumprfnew:
return true;
}
return false;
}
// Return true if a given MI can accommodate given offset.
// Use abs estimate as oppose to the exact number.
// TODO: This will need to be changed to use MC level
// definition of instruction extendable field size.
bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
unsigned offset) const {
// This selection of jump instructions matches to that what
// analyzeBranch can parse, plus NVJ.
if (isNewValueJump(MI)) // r9:2
return isInt<11>(offset);
switch (MI.getOpcode()) {
// Still missing Jump to address condition on register value.
default:
return false;
case Hexagon::J2_jump: // bits<24> dst; // r22:2
case Hexagon::J2_call:
case Hexagon::PS_call_nr:
return isInt<24>(offset);
case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
case Hexagon::J2_jumpf:
case Hexagon::J2_jumptnew:
case Hexagon::J2_jumptnewpt:
case Hexagon::J2_jumpfnew:
case Hexagon::J2_jumpfnewpt:
case Hexagon::J2_callt:
case Hexagon::J2_callf:
return isInt<17>(offset);
case Hexagon::J2_loop0i:
case Hexagon::J2_loop0iext:
case Hexagon::J2_loop0r:
case Hexagon::J2_loop0rext:
case Hexagon::J2_loop1i:
case Hexagon::J2_loop1iext:
case Hexagon::J2_loop1r:
case Hexagon::J2_loop1rext:
return isInt<9>(offset);
// TODO: Add all the compound branches here. Can we do this in Relation model?
case Hexagon::J4_cmpeqi_tp0_jump_nt:
case Hexagon::J4_cmpeqi_tp1_jump_nt:
case Hexagon::J4_cmpeqn1_tp0_jump_nt:
case Hexagon::J4_cmpeqn1_tp1_jump_nt:
return isInt<11>(offset);
}
}
bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
const MachineInstr &ESMI) const {
bool isLate = isLateResultInstr(LRMI);
bool isEarly = isEarlySourceInstr(ESMI);
LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
LLVM_DEBUG(LRMI.dump());
LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
LLVM_DEBUG(ESMI.dump());
if (isLate && isEarly) {
LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
return true;
}
return false;
}
bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case TargetOpcode::EXTRACT_SUBREG:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::COPY:
case TargetOpcode::INLINEASM:
case TargetOpcode::PHI:
return false;
default:
break;
}
unsigned SchedClass = MI.getDesc().getSchedClass();
return !is_TC1(SchedClass);
}
bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
// Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
// resource, but all operands can be received late like an ALU instruction.
return getType(MI) == HexagonII::TypeCVI_VX_LATE;
}
bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
return Opcode == Hexagon::J2_loop0i ||
Opcode == Hexagon::J2_loop0r ||
Opcode == Hexagon::J2_loop0iext ||
Opcode == Hexagon::J2_loop0rext ||
Opcode == Hexagon::J2_loop1i ||
Opcode == Hexagon::J2_loop1r ||
Opcode == Hexagon::J2_loop1iext ||
Opcode == Hexagon::J2_loop1rext;
}
bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default: return false;
case Hexagon::L4_iadd_memopw_io:
case Hexagon::L4_isub_memopw_io:
case Hexagon::L4_add_memopw_io:
case Hexagon::L4_sub_memopw_io:
case Hexagon::L4_and_memopw_io:
case Hexagon::L4_or_memopw_io:
case Hexagon::L4_iadd_memoph_io:
case Hexagon::L4_isub_memoph_io:
case Hexagon::L4_add_memoph_io:
case Hexagon::L4_sub_memoph_io:
case Hexagon::L4_and_memoph_io:
case Hexagon::L4_or_memoph_io:
case Hexagon::L4_iadd_memopb_io:
case Hexagon::L4_isub_memopb_io:
case Hexagon::L4_add_memopb_io:
case Hexagon::L4_sub_memopb_io:
case Hexagon::L4_and_memopb_io:
case Hexagon::L4_or_memopb_io:
case Hexagon::L4_ior_memopb_io:
case Hexagon::L4_ior_memoph_io:
case Hexagon::L4_ior_memopw_io:
case Hexagon::L4_iand_memopb_io:
case Hexagon::L4_iand_memoph_io:
case Hexagon::L4_iand_memopw_io:
return true;
}
return false;
}
bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
}
bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
}
bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
return isNewValueJump(MI) || isNewValueStore(MI);
}
bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
return isNewValue(MI) && MI.isBranch();
}
bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
}
bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
}
bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
}
// Returns true if a particular operand is extendable for an instruction.
bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
unsigned OperandNum) const {
const uint64_t F = MI.getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
== OperandNum;
}
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
assert(isPredicated(MI));
return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
assert(isPredicated(Opcode));
return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}
bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return !((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask);
}
bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
// Make sure that the instruction is predicated.
assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
return !((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask);
}
bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
}
bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
}
bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
assert(get(Opcode).isBranch() &&
(isPredicatedNew(Opcode) || isNewValue(Opcode)));
return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
}
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
}
bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
// Byte
case Hexagon::L2_loadrb_io:
case Hexagon::L4_loadrb_ur:
case Hexagon::L4_loadrb_ap:
case Hexagon::L2_loadrb_pr:
case Hexagon::L2_loadrb_pbr:
case Hexagon::L2_loadrb_pi:
case Hexagon::L2_loadrb_pci:
case Hexagon::L2_loadrb_pcr:
case Hexagon::L2_loadbsw2_io:
case Hexagon::L4_loadbsw2_ur:
case Hexagon::L4_loadbsw2_ap:
case Hexagon::L2_loadbsw2_pr:
case Hexagon::L2_loadbsw2_pbr:
case Hexagon::L2_loadbsw2_pi:
case Hexagon::L2_loadbsw2_pci:
case Hexagon::L2_loadbsw2_pcr:
case Hexagon::L2_loadbsw4_io:
case Hexagon::L4_loadbsw4_ur:
case Hexagon::L4_loadbsw4_ap:
case Hexagon::L2_loadbsw4_pr:
case Hexagon::L2_loadbsw4_pbr:
case Hexagon::L2_loadbsw4_pi:
case Hexagon::L2_loadbsw4_pci:
case Hexagon::L2_loadbsw4_pcr:
case Hexagon::L4_loadrb_rr:
case Hexagon::L2_ploadrbt_io:
case Hexagon::L2_ploadrbt_pi:
case Hexagon::L2_ploadrbf_io:
case Hexagon::L2_ploadrbf_pi:
case Hexagon::L2_ploadrbtnew_io:
case Hexagon::L2_ploadrbfnew_io:
case Hexagon::L4_ploadrbt_rr:
case Hexagon::L4_ploadrbf_rr:
case Hexagon::L4_ploadrbtnew_rr:
case Hexagon::L4_ploadrbfnew_rr:
case Hexagon::L2_ploadrbtnew_pi:
case Hexagon::L2_ploadrbfnew_pi:
case Hexagon::L4_ploadrbt_abs:
case Hexagon::L4_ploadrbf_abs:
case Hexagon::L4_ploadrbtnew_abs:
case Hexagon::L4_ploadrbfnew_abs:
case Hexagon::L2_loadrbgp:
// Half
case Hexagon::L2_loadrh_io:
case Hexagon::L4_loadrh_ur:
case Hexagon::L4_loadrh_ap:
case Hexagon::L2_loadrh_pr:
case Hexagon::L2_loadrh_pbr:
case Hexagon::L2_loadrh_pi:
case Hexagon::L2_loadrh_pci:
case Hexagon::L2_loadrh_pcr:
case Hexagon::L4_loadrh_rr:
case Hexagon::L2_ploadrht_io:
case Hexagon::L2_ploadrht_pi:
case Hexagon::L2_ploadrhf_io:
case Hexagon::L2_ploadrhf_pi:
case Hexagon::L2_ploadrhtnew_io:
case Hexagon::L2_ploadrhfnew_io:
case Hexagon::L4_ploadrht_rr:
case Hexagon::L4_ploadrhf_rr:
case Hexagon::L4_ploadrhtnew_rr:
case Hexagon::L4_ploadrhfnew_rr:
case Hexagon::L2_ploadrhtnew_pi:
case Hexagon::L2_ploadrhfnew_pi:
case Hexagon::L4_ploadrht_abs:
case Hexagon::L4_ploadrhf_abs:
case Hexagon::L4_ploadrhtnew_abs:
case Hexagon::L4_ploadrhfnew_abs:
case Hexagon::L2_loadrhgp:
return true;
default:
return false;
}
}
bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
}
bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::STriw_pred:
case Hexagon::LDriw_pred:
return true;
default:
return false;
}
}
bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
if (!MI.isBranch())
return false;
for (auto &Op : MI.operands())
if (Op.isGlobal() || Op.isSymbol())
return true;
return false;
}
// Returns true when SU has a timing class TC1.
bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
unsigned SchedClass = MI.getDesc().getSchedClass();
return is_TC1(SchedClass);
}
bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
unsigned SchedClass = MI.getDesc().getSchedClass();
return is_TC2(SchedClass);
}
bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
unsigned SchedClass = MI.getDesc().getSchedClass();
return is_TC2early(SchedClass);
}
bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
unsigned SchedClass = MI.getDesc().getSchedClass();
return is_TC4x(SchedClass);
}
// Schedule this ASAP.
bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
const MachineInstr &MI2) const {
if (mayBeCurLoad(MI1)) {
// if (result of SU is used in Next) return true;
Register DstReg = MI1.getOperand(0).getReg();
int N = MI2.getNumOperands();
for (int I = 0; I < N; I++)
if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
return true;
}
if (mayBeNewStore(MI2))
if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
return true;
return false;
}
bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
const uint64_t V = getType(MI);
return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
}
// Check if the Offset is a valid auto-inc imm by Load/Store Type.
bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
int Size = VT.getSizeInBits() / 8;
if (Offset % Size != 0)
return false;
int Count = Offset / Size;
switch (VT.getSimpleVT().SimpleTy) {
// For scalars the auto-inc is s4
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v8i8:
return isInt<4>(Count);
// For HVX vectors the auto-inc is s3
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
return isInt<3>(Count);
default:
break;
}
llvm_unreachable("Not an valid type!");
}
bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
const TargetRegisterInfo *TRI, bool Extend) const {
// This function is to check whether the "Offset" is in the correct range of
// the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
// inserted to calculate the final address. Due to this reason, the function
// assumes that the "Offset" has correct alignment.
// We used to assert if the offset was not properly aligned, however,
// there are cases where a misaligned pointer recast can cause this
// problem, and we need to allow for it. The front end warns of such
// misaligns with respect to load size.
switch (Opcode) {
case Hexagon::PS_vstorerq_ai:
case Hexagon::PS_vstorerv_ai:
case Hexagon::PS_vstorerw_ai:
case Hexagon::PS_vstorerw_nt_ai:
case Hexagon::PS_vloadrq_ai:
case Hexagon::PS_vloadrv_ai:
case Hexagon::PS_vloadrw_ai:
case Hexagon::PS_vloadrw_nt_ai:
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vS32b_ai:
case Hexagon::V6_vL32b_nt_ai:
case Hexagon::V6_vS32b_nt_ai:
case Hexagon::V6_vL32Ub_ai:
case Hexagon::V6_vS32Ub_ai: {
unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
assert(isPowerOf2_32(VectorSize));
if (Offset & (VectorSize-1))
return false;
return isInt<4>(Offset >> Log2_32(VectorSize));
}
case Hexagon::J2_loop0i:
case Hexagon::J2_loop1i:
return isUInt<10>(Offset);
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirbt_io:
case Hexagon::S4_storeirbf_io:
return isUInt<6>(Offset);
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeirht_io:
case Hexagon::S4_storeirhf_io:
return isShiftedUInt<6,1>(Offset);
case Hexagon::S4_storeiri_io:
case Hexagon::S4_storeirit_io:
case Hexagon::S4_storeirif_io:
return isShiftedUInt<6,2>(Offset);
}
if (Extend)
return true;
switch (Opcode) {
case Hexagon::L2_loadri_io:
case Hexagon::S2_storeri_io:
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
(Offset <= Hexagon_MEMW_OFFSET_MAX);
case Hexagon::L2_loadrd_io:
case Hexagon::S2_storerd_io:
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
(Offset <= Hexagon_MEMD_OFFSET_MAX);
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadruh_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerf_io:
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
(Offset <= Hexagon_MEMH_OFFSET_MAX);
case Hexagon::L2_loadrb_io:
case Hexagon::L2_loadrub_io:
case Hexagon::S2_storerb_io:
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
(Offset <= Hexagon_MEMB_OFFSET_MAX);
case Hexagon::A2_addi:
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
(Offset <= Hexagon_ADDI_OFFSET_MAX);
case Hexagon::L4_iadd_memopw_io:
case Hexagon::L4_isub_memopw_io:
case Hexagon::L4_add_memopw_io:
case Hexagon::L4_sub_memopw_io:
case Hexagon::L4_and_memopw_io:
case Hexagon::L4_or_memopw_io:
return (0 <= Offset && Offset <= 255);
case Hexagon::L4_iadd_memoph_io:
case Hexagon::L4_isub_memoph_io:
case Hexagon::L4_add_memoph_io:
case Hexagon::L4_sub_memoph_io:
case Hexagon::L4_and_memoph_io:
case Hexagon::L4_or_memoph_io:
return (0 <= Offset && Offset <= 127);
case Hexagon::L4_iadd_memopb_io:
case Hexagon::L4_isub_memopb_io:
case Hexagon::L4_add_memopb_io:
case Hexagon::L4_sub_memopb_io:
case Hexagon::L4_and_memopb_io:
case Hexagon::L4_or_memopb_io:
return (0 <= Offset && Offset <= 63);
// LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
// any size. Later pass knows how to handle it.
case Hexagon::STriw_pred:
case Hexagon::LDriw_pred:
case Hexagon::STriw_ctr:
case Hexagon::LDriw_ctr:
return true;
case Hexagon::PS_fi:
case Hexagon::PS_fia:
case Hexagon::INLINEASM:
return true;
case Hexagon::L2_ploadrbt_io:
case Hexagon::L2_ploadrbf_io:
case Hexagon::L2_ploadrubt_io:
case Hexagon::L2_ploadrubf_io:
case Hexagon::S2_pstorerbt_io:
case Hexagon::S2_pstorerbf_io:
return isUInt<6>(Offset);
case Hexagon::L2_ploadrht_io:
case Hexagon::L2_ploadrhf_io:
case Hexagon::L2_ploadruht_io:
case Hexagon::L2_ploadruhf_io:
case Hexagon::S2_pstorerht_io:
case Hexagon::S2_pstorerhf_io:
return isShiftedUInt<6,1>(Offset);
case Hexagon::L2_ploadrit_io:
case Hexagon::L2_ploadrif_io:
case Hexagon::S2_pstorerit_io:
case Hexagon::S2_pstorerif_io:
return isShiftedUInt<6,2>(Offset);
case Hexagon::L2_ploadrdt_io:
case Hexagon::L2_ploadrdf_io:
case Hexagon::S2_pstorerdt_io:
case Hexagon::S2_pstorerdf_io:
return isShiftedUInt<6,3>(Offset);
} // switch
llvm_unreachable("No offset range is defined for this opcode. "
"Please define it in the above switch statement!");
}
bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
return isHVXVec(MI) && isAccumulator(MI);
}
bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
const uint64_t F = get(MI.getOpcode()).TSFlags;
const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
return
V == HexagonII::TypeCVI_VA ||
V == HexagonII::TypeCVI_VA_DV;
}
bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const {
if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
return true;
if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
return true;
if (mayBeNewStore(ConsMI))
return true;
return false;
}
bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
// Byte
case Hexagon::L2_loadrub_io:
case Hexagon::L4_loadrub_ur:
case Hexagon::L4_loadrub_ap:
case Hexagon::L2_loadrub_pr:
case Hexagon::L2_loadrub_pbr:
case Hexagon::L2_loadrub_pi:
case Hexagon::L2_loadrub_pci:
case Hexagon::L2_loadrub_pcr:
case Hexagon::L2_loadbzw2_io:
case Hexagon::L4_loadbzw2_ur:
case Hexagon::L4_loadbzw2_ap:
case Hexagon::L2_loadbzw2_pr:
case Hexagon::L2_loadbzw2_pbr:
case Hexagon::L2_loadbzw2_pi:
case Hexagon::L2_loadbzw2_pci:
case Hexagon::L2_loadbzw2_pcr:
case Hexagon::L2_loadbzw4_io:
case Hexagon::L4_loadbzw4_ur:
case Hexagon::L4_loadbzw4_ap:
case Hexagon::L2_loadbzw4_pr:
case Hexagon::L2_loadbzw4_pbr:
case Hexagon::L2_loadbzw4_pi:
case Hexagon::L2_loadbzw4_pci:
case Hexagon::L2_loadbzw4_pcr:
case Hexagon::L4_loadrub_rr:
case Hexagon::L2_ploadrubt_io:
case Hexagon::L2_ploadrubt_pi:
case Hexagon::L2_ploadrubf_io:
case Hexagon::L2_ploadrubf_pi:
case Hexagon::L2_ploadrubtnew_io:
case Hexagon::L2_ploadrubfnew_io:
case Hexagon::L4_ploadrubt_rr:
case Hexagon::L4_ploadrubf_rr:
case Hexagon::L4_ploadrubtnew_rr:
case Hexagon::L4_ploadrubfnew_rr:
case Hexagon::L2_ploadrubtnew_pi:
case Hexagon::L2_ploadrubfnew_pi:
case Hexagon::L4_ploadrubt_abs:
case Hexagon::L4_ploadrubf_abs:
case Hexagon::L4_ploadrubtnew_abs:
case Hexagon::L4_ploadrubfnew_abs:
case Hexagon::L2_loadrubgp:
// Half
case Hexagon::L2_loadruh_io:
case Hexagon::L4_loadruh_ur:
case Hexagon::L4_loadruh_ap:
case Hexagon::L2_loadruh_pr:
case Hexagon::L2_loadruh_pbr:
case Hexagon::L2_loadruh_pi:
case Hexagon::L2_loadruh_pci:
case Hexagon::L2_loadruh_pcr:
case Hexagon::L4_loadruh_rr:
case Hexagon::L2_ploadruht_io:
case Hexagon::L2_ploadruht_pi:
case Hexagon::L2_ploadruhf_io:
case Hexagon::L2_ploadruhf_pi:
case Hexagon::L2_ploadruhtnew_io:
case Hexagon::L2_ploadruhfnew_io:
case Hexagon::L4_ploadruht_rr:
case Hexagon::L4_ploadruhf_rr:
case Hexagon::L4_ploadruhtnew_rr:
case Hexagon::L4_ploadruhfnew_rr:
case Hexagon::L2_ploadruhtnew_pi:
case Hexagon::L2_ploadruhfnew_pi:
case Hexagon::L4_ploadruht_abs:
case Hexagon::L4_ploadruhf_abs:
case Hexagon::L4_ploadruhtnew_abs:
case Hexagon::L4_ploadruhfnew_abs:
case Hexagon::L2_loadruhgp:
return true;
default:
return false;
}
}
// Add latency to instruction.
bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
const MachineInstr &MI2) const {
if (isHVXVec(MI1) && isHVXVec(MI2))
if (!isVecUsableNextPacket(MI1, MI2))
return true;
return false;
}
/// Get the base register and byte offset of a load/store instr.
bool HexagonInstrInfo::getMemOperandsWithOffset(
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
int64_t &Offset, const TargetRegisterInfo *TRI) const {
unsigned AccessSize = 0;
const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
if (!BaseOp || !BaseOp->isReg())
return false;
BaseOps.push_back(BaseOp);
return true;
}
/// Can these instructions execute at the same time in a bundle.
bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
const MachineInstr &Second) const {
if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
const MachineOperand &Op = Second.getOperand(0);
if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
return true;
}
if (DisableNVSchedule)
return false;
if (mayBeNewStore(Second)) {
// Make sure the definition of the first instruction is the value being
// stored.
const MachineOperand &Stored =
Second.getOperand(Second.getNumOperands() - 1);
if (!Stored.isReg())
return false;
for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
const MachineOperand &Op = First.getOperand(i);
if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
return true;
}
}
return false;
}
bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
unsigned Opc = CallMI.getOpcode();
return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
}
bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
for (auto &I : *B)
if (I.isEHLabel())
return true;
return false;
}
// Returns true if an instruction can be converted into a non-extended
// equivalent instruction.
bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
short NonExtOpcode;
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
return true;
if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute:
// Load/store with absolute addressing mode can be converted into
// base+offset mode.
NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
break;
case HexagonII::BaseImmOffset:
// Load/store with base+offset addressing mode can be converted into
// base+register offset addressing mode. However left shift operand should
// be set to 0.
NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
break;
case HexagonII::BaseLongOffset:
NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
break;
default:
return false;
}
if (NonExtOpcode < 0)
return false;
return true;
}
return false;
}
bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
return Hexagon::getRealHWInstr(MI.getOpcode(),
Hexagon::InstrType_Pseudo) >= 0;
}
bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
const {
MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
while (I != E) {
if (I->isBarrier())
return true;
++I;
}
return false;
}
// Returns true, if a LD insn can be promoted to a cur load.
bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
Subtarget.hasV60Ops();
}
// Returns true, if a ST insn can be promoted to a new-value store.
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
if (MI.mayStore() && !Subtarget.useNewValueStores())
return false;
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
}
bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const {
// There is no stall when ProdMI is not a V60 vector.
if (!isHVXVec(ProdMI))
return false;
// There is no stall when ProdMI and ConsMI are not dependent.
if (!isDependent(ProdMI, ConsMI))
return false;
// When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
// are scheduled in consecutive packets.
if (isVecUsableNextPacket(ProdMI, ConsMI))
return false;
return true;
}
bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
MachineBasicBlock::const_instr_iterator BII) const {
// There is no stall when I is not a V60 vector.
if (!isHVXVec(MI))
return false;
MachineBasicBlock::const_instr_iterator MII = BII;
MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
if (!MII->isBundle())
return producesStall(*MII, MI);
for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
const MachineInstr &J = *MII;
if (producesStall(J, MI))
return true;
}
return false;
}
bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
unsigned PredReg) const {
for (const MachineOperand &MO : MI.operands()) {
// Predicate register must be explicitly defined.
if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
return false;
if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
return false;
}
// Instruction that produce late predicate cannot be used as sources of
// dot-new.
switch (MI.getOpcode()) {
case Hexagon::A4_addp_c:
case Hexagon::A4_subp_c:
case Hexagon::A4_tlbmatch:
case Hexagon::A5_ACS:
case Hexagon::F2_sfinvsqrta:
case Hexagon::F2_sfrecipa:
case Hexagon::J2_endloop0:
case Hexagon::J2_endloop01:
case Hexagon::J2_ploop1si:
case Hexagon::J2_ploop1sr:
case Hexagon::J2_ploop2si:
case Hexagon::J2_ploop2sr:
case Hexagon::J2_ploop3si:
case Hexagon::J2_ploop3sr:
case Hexagon::S2_cabacdecbin:
case Hexagon::S2_storew_locked:
case Hexagon::S4_stored_locked:
return false;
}
return true;
}
bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
return Opcode == Hexagon::J2_jumpt ||
Opcode == Hexagon::J2_jumptpt ||
Opcode == Hexagon::J2_jumpf ||
Opcode == Hexagon::J2_jumpfpt ||
Opcode == Hexagon::J2_jumptnew ||
Opcode == Hexagon::J2_jumpfnew ||
Opcode == Hexagon::J2_jumptnewpt ||
Opcode == Hexagon::J2_jumpfnewpt;
}
bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
if (Cond.empty() || !isPredicated(Cond[0].getImm()))
return false;
return !isPredicatedTrue(Cond[0].getImm());
}
unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
}
// Returns the base register in a memory access (load/store). The offset is
// returned in Offset and the access size is returned in AccessSize.
// If the base operand has a subregister or the offset field does not contain
// an immediate value, return nullptr.
MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
int64_t &Offset,
unsigned &AccessSize) const {
// Return if it is not a base+offset type instruction or a MemOp.
if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
getAddrMode(MI) != HexagonII::BaseLongOffset &&
!isMemOp(MI) && !isPostIncrement(MI))
return nullptr;
AccessSize = getMemAccessSize(MI);
unsigned BasePos = 0, OffsetPos = 0;
if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
return nullptr;
// Post increment updates its EA after the mem access,
// so we need to treat its offset as zero.
if (isPostIncrement(MI)) {
Offset = 0;
} else {
const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
if (!OffsetOp.isImm())
return nullptr;
Offset = OffsetOp.getImm();
}
const MachineOperand &BaseOp = MI.getOperand(BasePos);
if (BaseOp.getSubReg() != 0)
return nullptr;
return &const_cast<MachineOperand&>(BaseOp);
}
/// Return the position of the base and offset operands for this instruction.
bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
unsigned &BasePos, unsigned &OffsetPos) const {
if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
return false;
// Deal with memops first.
if (isMemOp(MI)) {
BasePos = 0;
OffsetPos = 1;
} else if (MI.mayStore()) {
BasePos = 0;
OffsetPos = 1;
} else if (MI.mayLoad()) {
BasePos = 1;
OffsetPos = 2;
} else
return false;
if (isPredicated(MI)) {
BasePos++;
OffsetPos++;
}
if (isPostIncrement(MI)) {
BasePos++;
OffsetPos++;
}
if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
return false;
return true;
}
// Inserts branching instructions in reverse order of their occurrence.
// e.g. jump_t t1 (i1)
// jump t2 (i2)
// Jumpers = {i2, i1}
SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
MachineBasicBlock& MBB) const {
SmallVector<MachineInstr*, 2> Jumpers;
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::instr_iterator I = MBB.instr_end();
if (I == MBB.instr_begin())
return Jumpers;
// A basic block may looks like this:
//
// [ insn
// EH_LABEL
// insn
// insn
// insn
// EH_LABEL
// insn ]
//
// It has two succs but does not have a terminator
// Don't know how to handle it.
do {
--I;
if (I->isEHLabel())
return Jumpers;
} while (I != MBB.instr_begin());
I = MBB.instr_end();
--I;
while (I->isDebugInstr()) {
if (I == MBB.instr_begin())
return Jumpers;
--I;
}
if (!isUnpredicatedTerminator(*I))
return Jumpers;
// Get the last instruction in the block.
MachineInstr *LastInst = &*I;
Jumpers.push_back(LastInst);
MachineInstr *SecondLastInst = nullptr;
// Find one more terminator if present.
do {
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
if (!SecondLastInst) {
SecondLastInst = &*I;
Jumpers.push_back(SecondLastInst);
} else // This is a third branch.
return Jumpers;
}
if (I == MBB.instr_begin())
break;
--I;
} while (true);
return Jumpers;
}
// Returns Operand Index for the constant extended instruction.
unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
}
// See if instruction could potentially be a duplex candidate.
// If so, return its group. Zero otherwise.
HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
const MachineInstr &MI) const {
unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
switch (MI.getOpcode()) {
default:
return HexagonII::HCG_None;
//
// Compound pairs.
// "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
// "Rd16=#U6 ; jump #r9:2"
// "Rd16=Rs16 ; jump #r9:2"
//
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtu:
DstReg = MI.getOperand(0).getReg();
Src1Reg = MI.getOperand(1).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
return HexagonII::HCG_A;
break;
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtui:
// P0 = cmp.eq(Rs,#u2)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
((isUInt<5>(MI.getOperand(2).getImm())) ||
(MI.getOperand(2).getImm() == -1)))
return HexagonII::HCG_A;
break;
case Hexagon::A2_tfr:
// Rd = Rs
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
return HexagonII::HCG_A;
break;
case Hexagon::A2_tfrsi:
// Rd = #u6
// Do not test for #u6 size since the const is getting extended
// regardless and compound could be formed.
DstReg = MI.getOperand(0).getReg();
if (isIntRegForSubInst(DstReg))
return HexagonII::HCG_A;
break;
case Hexagon::S2_tstbit_i:
DstReg = MI.getOperand(0).getReg();
Src1Reg = MI.getOperand(1).getReg();
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
MI.getOperand(2).isImm() &&
isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
return HexagonII::HCG_A;
break;
// The fact that .new form is used pretty much guarantees
// that predicate register will match. Nevertheless,
// there could be some false positives without additional
// checking.
case Hexagon::J2_jumptnew:
case Hexagon::J2_jumpfnew:
case Hexagon::J2_jumptnewpt:
case Hexagon::J2_jumpfnewpt:
Src1Reg = MI.getOperand(0).getReg();
if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
(Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
return HexagonII::HCG_B;
break;
// Transfer and jump:
// Rd=#U6 ; jump #r9:2
// Rd=Rs ; jump #r9:2
// Do not test for jump range here.
case Hexagon::J2_jump:
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
return HexagonII::HCG_C;
}
return HexagonII::HCG_None;
}
// Returns -1 when there is no opcode found.
unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
const MachineInstr &GB) const {
assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
(GB.getOpcode() != Hexagon::J2_jumptnew))
return -1u;
Register DestReg = GA.getOperand(0).getReg();
if (!GB.readsRegister(DestReg))
return -1u;
if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
return -1u;
// The value compared against must be either u5 or -1.
const MachineOperand &CmpOp = GA.getOperand(2);
if (!CmpOp.isImm())
return -1u;
int V = CmpOp.getImm();
if (V == -1)
return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
: Hexagon::J4_cmpeqn1_tp1_jump_nt;
if (!isUInt<5>(V))
return -1u;
return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
: Hexagon::J4_cmpeqi_tp1_jump_nt;
}
// Returns -1 if there is no opcode found.
int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI,
bool ForBigCore) const {
// Static table to switch the opcodes across Tiny Core and Big Core.
// dup_ opcodes are Big core opcodes.
// NOTE: There are special instructions that need to handled later.
// L4_return* instructions, they will only occupy SLOT0 (on big core too).
// PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
// The compiler need to base the root instruction to L6_return_map_to_raw
// which can go any slot.
static const std::map<unsigned, unsigned> DupMap = {
{Hexagon::A2_add, Hexagon::dup_A2_add},
{Hexagon::A2_addi, Hexagon::dup_A2_addi},
{Hexagon::A2_andir, Hexagon::dup_A2_andir},
{Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
{Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
{Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
{Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
{Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
{Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
{Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
{Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
{Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
{Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
{Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
{Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
{Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
{Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
{Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
{Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
{Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
{Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
{Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
{Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
{Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
{Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
{Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
{Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
{Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
{Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
{Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
{Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
{Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
};
unsigned OpNum = MI.getOpcode();
// Conversion to Big core.
if (ForBigCore) {
auto Iter = DupMap.find(OpNum);
if (Iter != DupMap.end())
return Iter->second;
} else { // Conversion to Tiny core.
for (auto Iter = DupMap.begin(), End = DupMap.end(); Iter != End; ++Iter)
if (Iter->second == OpNum)
return Iter->first;
}
return -1;
}
int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
enum Hexagon::PredSense inPredSense;
inPredSense = invertPredicate ? Hexagon::PredSense_false :
Hexagon::PredSense_true;
int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
if (CondOpcode >= 0) // Valid Conditional opcode/instruction
return CondOpcode;
llvm_unreachable("Unexpected predicable instruction");
}
// Return the cur value instruction for a given store.
int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default: llvm_unreachable("Unknown .cur type");
case Hexagon::V6_vL32b_pi:
return Hexagon::V6_vL32b_cur_pi;
case Hexagon::V6_vL32b_ai:
return Hexagon::V6_vL32b_cur_ai;
case Hexagon::V6_vL32b_nt_pi:
return Hexagon::V6_vL32b_nt_cur_pi;
case Hexagon::V6_vL32b_nt_ai:
return Hexagon::V6_vL32b_nt_cur_ai;
}
return 0;
}
// Return the regular version of the .cur instruction.
int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default: llvm_unreachable("Unknown .cur type");
case Hexagon::V6_vL32b_cur_pi:
return Hexagon::V6_vL32b_pi;
case Hexagon::V6_vL32b_cur_ai:
return Hexagon::V6_vL32b_ai;
case Hexagon::V6_vL32b_nt_cur_pi:
return Hexagon::V6_vL32b_nt_pi;
case Hexagon::V6_vL32b_nt_cur_ai:
return Hexagon::V6_vL32b_nt_ai;
}
return 0;
}
// The diagram below shows the steps involved in the conversion of a predicated
// store instruction to its .new predicated new-value form.
//
// Note: It doesn't include conditional new-value stores as they can't be
// converted to .new predicate.
//
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
// ^ ^
// / \ (not OK. it will cause new-value store to be
// / X conditional on p0.new while R2 producer is
// / \ on p0)
// / \.
// p.new store p.old NV store
// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
// ^ ^
// \ /
// \ /
// \ /
// p.old store
// [if (p0)memw(R0+#0)=R2]
//
// The following set of instructions further explains the scenario where
// conditional new-value store becomes invalid when promoted to .new predicate
// form.
//
// { 1) if (p0) r0 = add(r1, r2)
// 2) p0 = cmp.eq(r3, #0) }
//
// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
// the first two instructions because in instr 1, r0 is conditional on old value
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
// is not valid for new-value stores.
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
// from the "Conditional Store" list. Because a predicated new value store
// would NOT be promoted to a double dot new store. See diagram below:
// This function returns yes for those stores that are predicated but not
// yet promoted to predicate dot new instructions.
//
// +---------------------+
// /-----| if (p0) memw(..)=r0 |---------\~
// || +---------------------+ ||
// promote || /\ /\ || promote
// || /||\ /||\ ||
// \||/ demote || \||/
// \/ || || \/
// +-------------------------+ || +-------------------------+
// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
// +-------------------------+ || +-------------------------+
// || || ||
// || demote \||/
// promote || \/ NOT possible
// || || /\~
// \||/ || /||\~
// \/ || ||
// +-----------------------------+
// | if (p0.new) memw(..)=r0.new |
// +-----------------------------+
// Double Dot New Store
//
// Returns the most basic instruction for the .new predicated instructions and
// new-value stores.
// For example, all of the following instructions will be converted back to the
// same instruction:
// 1) if (p0.new) memw(R0+#0) = R1.new --->
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
// 3) if (p0.new) memw(R0+#0) = R1 --->
//
// To understand the translation of instruction 1 to its original form, consider
// a packet with 3 instructions.
// { p0 = cmp.eq(R0,R1)
// if (p0.new) R2 = add(R3, R4)
// R5 = add (R3, R1)
// }
// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
//
// This instruction can be part of the previous packet only if both p0 and R2
// are promoted to .new values. This promotion happens in steps, first
// predicate register is promoted to .new and in the next iteration R2 is
// promoted. Therefore, in case of dependence check failure (due to R5) during
// next iteration, it should be converted back to its most basic form.
// Return the new value instruction for a given store.
int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
if (NVOpcode >= 0) // Valid new-value store instruction.
return NVOpcode;
switch (MI.getOpcode()) {
default:
report_fatal_error(std::string("Unknown .new type: ") +
std::to_string(MI.getOpcode()));
case Hexagon::S4_storerb_ur:
return Hexagon::S4_storerbnew_ur;
case Hexagon::S2_storerb_pci:
return Hexagon::S2_storerb_pci;
case Hexagon::S2_storeri_pci:
return Hexagon::S2_storeri_pci;
case Hexagon::S2_storerh_pci:
return Hexagon::S2_storerh_pci;
case Hexagon::S2_storerd_pci:
return Hexagon::S2_storerd_pci;
case Hexagon::S2_storerf_pci:
return Hexagon::S2_storerf_pci;
case Hexagon::V6_vS32b_ai:
return Hexagon::V6_vS32b_new_ai;
case Hexagon::V6_vS32b_pi:
return Hexagon::V6_vS32b_new_pi;
}
return 0;
}
// Returns the opcode to use when converting MI, which is a conditional jump,
// into a conditional instruction which uses the .new value of the predicate.
// We also use branch probabilities to add a hint to the jump.
// If MBPI is null, all edges will be treated as equally likely for the
// purposes of establishing a predication hint.
int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
const MachineBranchProbabilityInfo *MBPI) const {
// We assume that block can have at most two successors.
const MachineBasicBlock *Src = MI.getParent();
const MachineOperand &BrTarget = MI.getOperand(1);
bool Taken = false;
const BranchProbability OneHalf(1, 2);
auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) {
if (MBPI)
return MBPI->getEdgeProbability(Src, Dst);
return BranchProbability(1, Src->succ_size());
};
if (BrTarget.isMBB()) {
const MachineBasicBlock *Dst = BrTarget.getMBB();
Taken = getEdgeProbability(Src, Dst) >= OneHalf;
} else {
// The branch target is not a basic block (most likely a function).
// Since BPI only gives probabilities for targets that are basic blocks,
// try to identify another target of this branch (potentially a fall-
// -through) and check the probability of that target.
//
// The only handled branch combinations are:
// - one conditional branch,
// - one conditional branch followed by one unconditional branch.
// Otherwise, assume not-taken.
assert(MI.isConditionalBranch());
const MachineBasicBlock &B = *MI.getParent();
bool SawCond = false, Bad = false;
for (const MachineInstr &I : B) {
if (!I.isBranch())
continue;
if (I.isConditionalBranch()) {
SawCond = true;
if (&I != &MI) {
Bad = true;
break;
}
}
if (I.isUnconditionalBranch() && !SawCond) {
Bad = true;
break;
}
}
if (!Bad) {
MachineBasicBlock::const_instr_iterator It(MI);
MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
if (NextIt == B.instr_end()) {
// If this branch is the last, look for the fall-through block.
for (const MachineBasicBlock *SB : B.successors()) {
if (!B.isLayoutSuccessor(SB))
continue;
Taken = getEdgeProbability(Src, SB) < OneHalf;
break;
}
} else {
assert(NextIt->isUnconditionalBranch());
// Find the first MBB operand and assume it's the target.
const MachineBasicBlock *BT = nullptr;
for (const MachineOperand &Op : NextIt->operands()) {
if (!Op.isMBB())
continue;
BT = Op.getMBB();
break;
}
Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
}
} // if (!Bad)
}
// The Taken flag should be set to something reasonable by this point.
switch (MI.getOpcode()) {
case Hexagon::J2_jumpt:
return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
case Hexagon::J2_jumpf:
return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
default:
llvm_unreachable("Unexpected jump instruction.");
}
}
// Return .new predicate version for an instruction.
int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
const MachineBranchProbabilityInfo *MBPI) const {
switch (MI.getOpcode()) {
// Condtional Jumps
case Hexagon::J2_jumpt:
case Hexagon::J2_jumpf:
return getDotNewPredJumpOp(MI, MBPI);
}
int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
if (NewOpcode >= 0)
return NewOpcode;
return 0;
}
int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
int NewOp = MI.getOpcode();
if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
NewOp = Hexagon::getPredOldOpcode(NewOp);
// All Hexagon architectures have prediction bits on dot-new branches,
// but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
// to pick the right opcode when converting back to dot-old.
if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
switch (NewOp) {
case Hexagon::J2_jumptpt:
NewOp = Hexagon::J2_jumpt;
break;
case Hexagon::J2_jumpfpt:
NewOp = Hexagon::J2_jumpf;
break;
case Hexagon::J2_jumprtpt:
NewOp = Hexagon::J2_jumprt;
break;
case Hexagon::J2_jumprfpt:
NewOp = Hexagon::J2_jumprf;
break;
}
}
assert(NewOp >= 0 &&
"Couldn't change predicate new instruction to its old form.");
}
if (isNewValueStore(NewOp)) { // Convert into non-new-value format
NewOp = Hexagon::getNonNVStore(NewOp);
assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
}
if (Subtarget.hasV60Ops())
return NewOp;
// Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
switch (NewOp) {
case Hexagon::J2_jumpfpt:
return Hexagon::J2_jumpf;
case Hexagon::J2_jumptpt:
return Hexagon::J2_jumpt;
case Hexagon::J2_jumprfpt:
return Hexagon::J2_jumprf;
case Hexagon::J2_jumprtpt:
return Hexagon::J2_jumprt;
}
return NewOp;
}
// See if instruction could potentially be a duplex candidate.
// If so, return its group. Zero otherwise.
HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
const MachineInstr &MI) const {
unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
switch (MI.getOpcode()) {
default:
return HexagonII::HSIG_None;
//
// Group L1:
//
// Rd = memw(Rs+#u4:2)
// Rd = memub(Rs+#u4:0)
case Hexagon::L2_loadri_io:
case Hexagon::dup_L2_loadri_io:
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
// Special case this one from Group L2.
// Rd = memw(r29+#u5:2)
if (isIntRegForSubInst(DstReg)) {
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
HRI.getStackRegister() == SrcReg &&
MI.getOperand(2).isImm() &&
isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_L2;
// Rd = memw(Rs+#u4:2)
if (isIntRegForSubInst(SrcReg) &&
(MI.getOperand(2).isImm() &&
isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
return HexagonII::HSIG_L1;
}
break;
case Hexagon::L2_loadrub_io:
case Hexagon::dup_L2_loadrub_io:
// Rd = memub(Rs+#u4:0)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_L1;
break;
//
// Group L2:
//
// Rd = memh/memuh(Rs+#u3:1)
// Rd = memb(Rs+#u3:0)
// Rd = memw(r29+#u5:2) - Handled above.
// Rdd = memd(r29+#u5:3)
// deallocframe
// [if ([!]p0[.new])] dealloc_return
// [if ([!]p0[.new])] jumpr r31
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadruh_io:
case Hexagon::dup_L2_loadrh_io:
case Hexagon::dup_L2_loadruh_io:
// Rd = memh/memuh(Rs+#u3:1)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
MI.getOperand(2).isImm() &&
isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_L2;
break;
case Hexagon::L2_loadrb_io:
case Hexagon::dup_L2_loadrb_io:
// Rd = memb(Rs+#u3:0)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
MI.getOperand(2).isImm() &&
isUInt<3>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_L2;
break;
case Hexagon::L2_loadrd_io:
case Hexagon::dup_L2_loadrd_io:
// Rdd = memd(r29+#u5:3)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isDblRegForSubInst(DstReg, HRI) &&
Hexagon::IntRegsRegClass.contains(SrcReg) &&
HRI.getStackRegister() == SrcReg &&
MI.getOperand(2).isImm() &&
isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_L2;
break;
// dealloc_return is not documented in Hexagon Manual, but marked
// with A_SUBINSN attribute in iset_v4classic.py.
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
case Hexagon::L4_return:
case Hexagon::L2_deallocframe:
case Hexagon::dup_L2_deallocframe:
return HexagonII::HSIG_L2;
case Hexagon::EH_RETURN_JMPR:
case Hexagon::PS_jmpret:
case Hexagon::SL2_jumpr31:
// jumpr r31
// Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
DstReg = MI.getOperand(0).getReg();
if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
return HexagonII::HSIG_L2;
break;
case Hexagon::PS_jmprett:
case Hexagon::PS_jmpretf:
case Hexagon::PS_jmprettnewpt:
case Hexagon::PS_jmpretfnewpt:
case Hexagon::PS_jmprettnew:
case Hexagon::PS_jmpretfnew:
case Hexagon::SL2_jumpr31_t:
case Hexagon::SL2_jumpr31_f:
case Hexagon::SL2_jumpr31_tnew:
case Hexagon::SL2_jumpr31_fnew:
DstReg = MI.getOperand(1).getReg();
SrcReg = MI.getOperand(0).getReg();
// [if ([!]p0[.new])] jumpr r31
if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
(Hexagon::P0 == SrcReg)) &&
(Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
return HexagonII::HSIG_L2;
break;
case Hexagon::L4_return_t:
case Hexagon::L4_return_f:
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_tnew_pt:
case Hexagon::L4_return_fnew_pt:
// [if ([!]p0[.new])] dealloc_return
SrcReg = MI.getOperand(0).getReg();
if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
return HexagonII::HSIG_L2;
break;
//
// Group S1:
//
// memw(Rs+#u4:2) = Rt
// memb(Rs+#u4:0) = Rt
case Hexagon::S2_storeri_io:
case Hexagon::dup_S2_storeri_io:
// Special case this one from Group S2.
// memw(r29+#u5:2) = Rt
Src1Reg = MI.getOperand(0).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
isIntRegForSubInst(Src2Reg) &&
HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
return HexagonII::HSIG_S2;
// memw(Rs+#u4:2) = Rt
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
MI.getOperand(1).isImm() &&
isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
return HexagonII::HSIG_S1;
break;
case Hexagon::S2_storerb_io:
case Hexagon::dup_S2_storerb_io:
// memb(Rs+#u4:0) = Rt
Src1Reg = MI.getOperand(0).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
return HexagonII::HSIG_S1;
break;
//
// Group S2:
//
// memh(Rs+#u3:1) = Rt
// memw(r29+#u5:2) = Rt
// memd(r29+#s6:3) = Rtt
// memw(Rs+#u4:2) = #U1
// memb(Rs+#u4) = #U1
// allocframe(#u5:3)
case Hexagon::S2_storerh_io:
case Hexagon::dup_S2_storerh_io:
// memh(Rs+#u3:1) = Rt
Src1Reg = MI.getOperand(0).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
MI.getOperand(1).isImm() &&
isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
return HexagonII::HSIG_S1;
break;
case Hexagon::S2_storerd_io:
case Hexagon::dup_S2_storerd_io:
// memd(r29+#s6:3) = Rtt
Src1Reg = MI.getOperand(0).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (isDblRegForSubInst(Src2Reg, HRI) &&
Hexagon::IntRegsRegClass.contains(Src1Reg) &&
HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
isShiftedInt<6,3>(MI.getOperand(1).getImm()))
return HexagonII::HSIG_S2;
break;
case Hexagon::S4_storeiri_io:
case Hexagon::dup_S4_storeiri_io:
// memw(Rs+#u4:2) = #U1
Src1Reg = MI.getOperand(0).getReg();
if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_S2;
break;
case Hexagon::S4_storeirb_io:
case Hexagon::dup_S4_storeirb_io:
// memb(Rs+#u4) = #U1
Src1Reg = MI.getOperand(0).getReg();
if (isIntRegForSubInst(Src1Reg) &&
MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_S2;
break;
case Hexagon::S2_allocframe:
case Hexagon::dup_S2_allocframe:
if (MI.getOperand(2).isImm() &&
isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_S1;
break;
//
// Group A:
//
// Rx = add(Rx,#s7)
// Rd = Rs
// Rd = #u6
// Rd = #-1
// if ([!]P0[.new]) Rd = #0
// Rd = add(r29,#u6:2)
// Rx = add(Rx,Rs)
// P0 = cmp.eq(Rs,#u2)
// Rdd = combine(#0,Rs)
// Rdd = combine(Rs,#0)
// Rdd = combine(#u2,#U2)
// Rd = add(Rs,#1)
// Rd = add(Rs,#-1)
// Rd = sxth/sxtb/zxtb/zxth(Rs)
// Rd = and(Rs,#1)
case Hexagon::A2_addi:
case Hexagon::dup_A2_addi:
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg)) {
// Rd = add(r29,#u6:2)
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_A;
// Rx = add(Rx,#s7)
if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
isInt<7>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_A;
// Rd = add(Rs,#1)
// Rd = add(Rs,#-1)
if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
((MI.getOperand(2).getImm() == 1) ||
(MI.getOperand(2).getImm() == -1)))
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_add:
case Hexagon::dup_A2_add:
// Rx = add(Rx,Rs)
DstReg = MI.getOperand(0).getReg();
Src1Reg = MI.getOperand(1).getReg();
Src2Reg = MI.getOperand(2).getReg();
if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
isIntRegForSubInst(Src2Reg))
return HexagonII::HSIG_A;
break;
case Hexagon::A2_andir:
case Hexagon::dup_A2_andir:
// Same as zxtb.
// Rd16=and(Rs16,#255)
// Rd16=and(Rs16,#1)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
MI.getOperand(2).isImm() &&
((MI.getOperand(2).getImm() == 1) ||
(MI.getOperand(2).getImm() == 255)))
return HexagonII::HSIG_A;
break;
case Hexagon::A2_tfr:
case Hexagon::dup_A2_tfr:
// Rd = Rs
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
return HexagonII::HSIG_A;
break;
case Hexagon::A2_tfrsi:
case Hexagon::dup_A2_tfrsi:
// Rd = #u6
// Do not test for #u6 size since the const is getting extended
// regardless and compound could be formed.
// Rd = #-1
DstReg = MI.getOperand(0).getReg();
if (isIntRegForSubInst(DstReg))
return HexagonII::HSIG_A;
break;
case Hexagon::C2_cmoveit:
case Hexagon::C2_cmovenewit:
case Hexagon::C2_cmoveif:
case Hexagon::C2_cmovenewif:
case Hexagon::dup_C2_cmoveit:
case Hexagon::dup_C2_cmovenewit:
case Hexagon::dup_C2_cmoveif:
case Hexagon::dup_C2_cmovenewif:
// if ([!]P0[.new]) Rd = #0
// Actual form:
// %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) &&
Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
return HexagonII::HSIG_A;
break;
case Hexagon::C2_cmpeqi:
case Hexagon::dup_C2_cmpeqi:
// P0 = cmp.eq(Rs,#u2)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
return HexagonII::HSIG_A;
break;
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
case Hexagon::dup_A2_combineii:
case Hexagon::dup_A4_combineii:
// Rdd = combine(#u2,#U2)
DstReg = MI.getOperand(0).getReg();
if (isDblRegForSubInst(DstReg, HRI) &&
((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
(MI.getOperand(1).isGlobal() &&
isUInt<2>(MI.getOperand(1).getOffset()))) &&
((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
(MI.getOperand(2).isGlobal() &&
isUInt<2>(MI.getOperand(2).getOffset()))))
return HexagonII::HSIG_A;
break;
case Hexagon::A4_combineri:
case Hexagon::dup_A4_combineri:
// Rdd = combine(Rs,#0)
// Rdd = combine(Rs,#0)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
(MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
return HexagonII::HSIG_A;
break;
case Hexagon::A4_combineir:
case Hexagon::dup_A4_combineir:
// Rdd = combine(#0,Rs)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(2).getReg();
if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
(MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
return HexagonII::HSIG_A;
break;
case Hexagon::A2_sxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
case Hexagon::dup_A2_sxtb:
case Hexagon::dup_A2_sxth:
case Hexagon::dup_A2_zxtb:
case Hexagon::dup_A2_zxth:
// Rd = sxth/sxtb/zxtb/zxth(Rs)
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
return HexagonII::HSIG_A;
break;
}
return HexagonII::HSIG_None;
}
short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
}
unsigned HexagonInstrInfo::getInstrTimingClassLatency(
const InstrItineraryData *ItinData, const MachineInstr &MI) const {
// Default to one cycle for no itinerary. However, an "empty" itinerary may
// still have a MinLatency property, which getStageLatency checks.
if (!ItinData)
return getInstrLatency(ItinData, MI);
if (MI.isTransient())
return 0;
return ItinData->getStageLatency(MI.getDesc().getSchedClass());
}
/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
///
/// This is a raw interface to the itinerary that may be directly overriden by
/// a target. Use computeOperandLatency to get the best estimate of latency.
int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI,
unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
// Get DefIdx and UseIdx for super registers.
const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) {
if (DefMO.isImplicit()) {
for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
if (Idx != -1) {
DefIdx = Idx;
break;
}
}
}
const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
if (UseMO.isImplicit()) {
for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
if (Idx != -1) {
UseIdx = Idx;
break;
}
}
}
}
int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
UseMI, UseIdx);
if (!Latency)
// We should never have 0 cycle latency between two instructions unless
// they can be packetized together. However, this decision can't be made
// here.
Latency = 1;
return Latency;
}
// inverts the predication logic.
// p -> NotP
// NotP -> P
bool HexagonInstrInfo::getInvertedPredSense(
SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond.empty())
return false;
unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
Cond[0].setImm(Opc);
return true;
}
unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
int InvPredOpcode;
InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
: Hexagon::getTruePredOpcode(Opc);
if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
return InvPredOpcode;
llvm_unreachable("Unexpected predicated instruction");
}
// Returns the max value that doesn't need to be extended.
int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1U << (bits - 1));
else
return ~(-1U << bits);
}
bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::L2_loadrbgp:
case Hexagon::L2_loadrdgp:
case Hexagon::L2_loadrhgp:
case Hexagon::L2_loadrigp:
case Hexagon::L2_loadrubgp:
case Hexagon::L2_loadruhgp:
case Hexagon::S2_storerbgp:
case Hexagon::S2_storerbnewgp:
case Hexagon::S2_storerhgp:
case Hexagon::S2_storerhnewgp:
case Hexagon::S2_storerigp:
case Hexagon::S2_storerinewgp:
case Hexagon::S2_storerdgp:
case Hexagon::S2_storerfgp:
return true;
}
const uint64_t F = MI.getDesc().TSFlags;
unsigned addrMode =
((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
// Disallow any base+offset instruction. The assembler does not yet reorder
// based up any zero offset instruction.
return (addrMode == HexagonII::BaseRegOffset ||
addrMode == HexagonII::BaseImmOffset ||
addrMode == HexagonII::BaseLongOffset);
}
bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const {
// Workaround for the Global Scheduler. Sometimes, it creates
// A4_ext as a Pseudo instruction and calls this function to see if
// it can be added to an existing bundle. Since the instruction doesn't
// belong to any BB yet, we can't use getUnits API.
if (MI.getOpcode() == Hexagon::A4_ext)
return false;
unsigned FuncUnits = getUnits(MI);
return HexagonFUnits::isSlot0Only(FuncUnits);
}
bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return ((F >> HexagonII::RestrictNoSlot1StorePos) &
HexagonII::RestrictNoSlot1StoreMask);
}
void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
bool ToBigInstrs) const {
int Opcode = -1;
if (ToBigInstrs) { // To BigCore Instr.
// Check if the instruction can form a Duplex.
if (getDuplexCandidateGroup(*MII))
// Get the opcode marked "dup_*" tag.
Opcode = getDuplexOpcode(*MII, ToBigInstrs);
} else // To TinyCore Instr.
Opcode = getDuplexOpcode(*MII, ToBigInstrs);
// Change the opcode of the instruction.
if (Opcode >= 0)
MII->setDesc(get(Opcode));
}
// This function is used to translate instructions to facilitate generating
// Duplexes on TinyCore.
void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF,
bool ToBigInstrs) const {
for (auto &MB : MF)
for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
End = MB.instr_end();
Instr != End; ++Instr)
changeDuplexOpcode(Instr, ToBigInstrs);
}
// This is a specialized form of above function.
void HexagonInstrInfo::translateInstrsForDup(
MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
MachineBasicBlock *MBB = MII->getParent();
while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
changeDuplexOpcode(MII, ToBigInstrs);
++MII;
}
}
unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
using namespace HexagonII;
const uint64_t F = MI.getDesc().TSFlags;
unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
if (Size != 0)
return Size;
// Handle vector access sizes.
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
switch (S) {
case HexagonII::HVXVectorAccess:
return HRI.getSpillSize(Hexagon::HvxVRRegClass);
default:
llvm_unreachable("Unexpected instruction");
}
}
// Returns the min value that doesn't need to be extended.
int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1U << (bits - 1);
else
return 0;
}
// Returns opcode of the non-extended equivalent instruction.
short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
if (NonExtOpcode >= 0)
return NonExtOpcode;
if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute:
return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
case HexagonII::BaseImmOffset:
return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
case HexagonII::BaseLongOffset:
return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
default:
return -1;
}
}
return -1;
}
bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
if (Cond.empty())
return false;
assert(Cond.size() == 2);
if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
return false;
}
PredReg = Cond[1].getReg();
PredRegPos = 1;
// See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
PredRegFlags = 0;
if (Cond[1].isImplicit())
PredRegFlags = RegState::Implicit;
if (Cond[1].isUndef())
PredRegFlags |= RegState::Undef;
return true;
}
short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
}
short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
return Hexagon::getRegForm(MI.getOpcode());
}
// Return the number of bytes required to encode the instruction.
// Hexagon instructions are fixed length, 4 bytes, unless they
// use a constant extender, which requires another 4 bytes.
// For debug instructions and prolog labels, return 0.
unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
if (MI.isDebugInstr() || MI.isPosition())
return 0;
unsigned Size = MI.getDesc().getSize();
if (!Size)
// Assume the default insn size in case it cannot be determined
// for whatever reason.
Size = HEXAGON_INSTR_SIZE;
if (isConstExtended(MI) || isExtended(MI))
Size += HEXAGON_INSTR_SIZE;
// Try and compute number of instructions in asm.
if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
const MachineBasicBlock &MBB = *MI.getParent();
const MachineFunction *MF = MBB.getParent();
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
// Count the number of register definitions to find the asm string.
unsigned NumDefs = 0;
for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr and approximate number of instructions.
const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
Size = getInlineAsmLength(AsmStr, *MAI);
}
return Size;
}
uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
const uint64_t F = MI.getDesc().TSFlags;
return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
}
unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
return IS.getUnits();
}
// Calculate size of the basic block without debug instructions.
unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
return nonDbgMICount(BB->instr_begin(), BB->instr_end());
}
unsigned HexagonInstrInfo::nonDbgBundleSize(
MachineBasicBlock::const_iterator BundleHead) const {
assert(BundleHead->isBundle() && "Not a bundle header");
auto MII = BundleHead.getInstrIterator();
// Skip the bundle header.
return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
}
/// immediateExtend - Changes the instruction in place to one using an immediate
/// extender.
void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
assert((isExtendable(MI)||isConstExtended(MI)) &&
"Instruction must be extendable");
// Find which operand is extendable.
short ExtOpNum = getCExtOpNum(MI);
MachineOperand &MO = MI.getOperand(ExtOpNum);
// This needs to be something we understand.
assert((MO.isMBB() || MO.isImm()) &&
"Branch with unknown extendable field type");
// Mark given operand as extended.
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
}
bool HexagonInstrInfo::invertAndChangeJumpTarget(
MachineInstr &MI, MachineBasicBlock *NewTarget) const {
LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
<< printMBBReference(*NewTarget);
MI.dump(););
assert(MI.isBranch());
unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
int TargetPos = MI.getNumOperands() - 1;
// In general branch target is the last operand,
// but some implicit defs added at the end might change it.
while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
--TargetPos;
assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
MI.getOperand(TargetPos).setMBB(NewTarget);
if (EnableBranchPrediction && isPredicatedNew(MI)) {
NewOpcode = reversePrediction(NewOpcode);
}
MI.setDesc(get(NewOpcode));
return true;
}
void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
/* +++ The code below is used to generate complete set of Hexagon Insn +++ */
MachineFunction::iterator A = MF.begin();
MachineBasicBlock &B = *A;
MachineBasicBlock::iterator I = B.begin();
DebugLoc DL = I->getDebugLoc();
MachineInstr *NewMI;
for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
NewMI = BuildMI(B, I, DL, get(insn));
LLVM_DEBUG(dbgs() << "\n"
<< getName(NewMI->getOpcode())
<< " Class: " << NewMI->getDesc().getSchedClass());
NewMI->eraseFromParent();
}
/* --- The code above is used to generate complete set of Hexagon Insn --- */
}
// inverts the predication logic.
// p -> NotP
// NotP -> P
bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
return true;
}
// Reverse the branch prediction.
unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
int PredRevOpcode = -1;
if (isPredictedTaken(Opcode))
PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
else
PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
assert(PredRevOpcode > 0);
return PredRevOpcode;
}
// TODO: Add more rigorous validation.
bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
const {
return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
}
void HexagonInstrInfo::
setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
assert(MIB->isBundle());
MachineOperand &Operand = MIB->getOperand(0);
if (Operand.isImm())
Operand.setImm(Operand.getImm() | memShufDisabledMask);
else
MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
}
bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
assert(MIB.isBundle());
const MachineOperand &Operand = MIB.getOperand(0);
return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
}
// Addressing mode relations.
short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
}
short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
}