1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Transforms/Utils/BreakCriticalEdges.cpp
Chandler Carruth 4c1f3c24db Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00

410 lines
16 KiB
C++

//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
// dominator trees.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "break-crit-edges"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
namespace {
struct BreakCriticalEdges : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges() : FunctionPass(ID) {
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<ProfileInfo>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
}
};
}
char BreakCriticalEdges::ID = 0;
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
"Break critical edges in CFG", false, false)
// Publicly exposed interface to pass...
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
FunctionPass *llvm::createBreakCriticalEdgesPass() {
return new BreakCriticalEdges();
}
// runOnFunction - Loop over all of the edges in the CFG, breaking critical
// edges as they are found.
//
bool BreakCriticalEdges::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (SplitCriticalEdge(TI, i, this)) {
++NumBroken;
Changed = true;
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//
// isCriticalEdge - Return true if the specified edge is a critical edge.
// Critical edges are edges from a block with multiple successors to a block
// with multiple predecessors.
//
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
bool AllowIdenticalEdges) {
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
if (TI->getNumSuccessors() == 1) return false;
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
// If there is more than one predecessor, this is a critical edge...
assert(I != E && "No preds, but we have an edge to the block?");
const BasicBlock *FirstPred = *I;
++I; // Skip one edge due to the incoming arc from TI.
if (!AllowIdenticalEdges)
return I != E;
// If AllowIdenticalEdges is true, then we allow this edge to be considered
// non-critical iff all preds come from TI's block.
while (I != E) {
const BasicBlock *P = *I;
if (P != FirstPred)
return true;
// Note: leave this as is until no one ever compiles with either gcc 4.0.1
// or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
E = pred_end(P);
++I;
}
return false;
}
/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
/// may require new PHIs in the new exit block. This function inserts the
/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
/// is the new loop exit block, and DestBB is the old loop exit, now the
/// successor of SplitBB.
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
BasicBlock *SplitBB,
BasicBlock *DestBB) {
// SplitBB shouldn't have anything non-trivial in it yet.
assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
// For each PHI in the destination block.
for (BasicBlock::iterator I = DestBB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
unsigned Idx = PN->getBasicBlockIndex(SplitBB);
Value *V = PN->getIncomingValue(Idx);
// If the input is a PHI which already satisfies LCSSA, don't create
// a new one.
if (const PHINode *VP = dyn_cast<PHINode>(V))
if (VP->getParent() == SplitBB)
continue;
// Otherwise a new PHI is needed. Create one and populate it.
PHINode *NewPN =
PHINode::Create(PN->getType(), Preds.size(), "split",
SplitBB->isLandingPad() ?
SplitBB->begin() : SplitBB->getTerminator());
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
NewPN->addIncoming(V, Preds[i]);
// Update the original PHI.
PN->setIncomingValue(Idx, NewPN);
}
}
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
/// split the critical edge. This will update DominatorTree information if it
/// is available, thus calling this pass will not invalidate either of them.
/// This returns the new block if the edge was split, null otherwise.
///
/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
/// specified successor will be merged into the same critical edge block.
/// This is most commonly interesting with switch instructions, which may
/// have many edges to any one destination. This ensures that all edges to that
/// dest go to one block instead of each going to a different block, but isn't
/// the standard definition of a "critical edge".
///
/// It is invalid to call this function on a critical edge that starts at an
/// IndirectBrInst. Splitting these edges will almost always create an invalid
/// program because the address of the new block won't be the one that is jumped
/// to.
///
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
Pass *P, bool MergeIdenticalEdges,
bool DontDeleteUselessPhis,
bool SplitLandingPads) {
if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
assert(!isa<IndirectBrInst>(TI) &&
"Cannot split critical edge from IndirectBrInst");
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Splitting the critical edge to a landing pad block is non-trivial. Don't do
// it in this generic function.
if (DestBB->isLandingPad()) return 0;
// Create a new basic block, linking it into the CFG.
BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
// Create our unconditional branch.
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
NewBI->setDebugLoc(TI->getDebugLoc());
// Branch to the new block, breaking the edge.
TI->setSuccessor(SuccNum, NewBB);
// Insert the block into the function... right after the block TI lives in.
Function &F = *TIBB->getParent();
Function::iterator FBBI = TIBB;
F.getBasicBlockList().insert(++FBBI, NewBB);
// If there are any PHI nodes in DestBB, we need to update them so that they
// merge incoming values from NewBB instead of from TIBB.
{
unsigned BBIdx = 0;
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
// We no longer enter through TIBB, now we come in through NewBB.
// Revector exactly one entry in the PHI node that used to come from
// TIBB to come from NewBB.
PHINode *PN = cast<PHINode>(I);
// Reuse the previous value of BBIdx if it lines up. In cases where we
// have multiple phi nodes with *lots* of predecessors, this is a speed
// win because we don't have to scan the PHI looking for TIBB. This
// happens because the BB list of PHI nodes are usually in the same
// order.
if (PN->getIncomingBlock(BBIdx) != TIBB)
BBIdx = PN->getBasicBlockIndex(TIBB);
PN->setIncomingBlock(BBIdx, NewBB);
}
}
// If there are any other edges from TIBB to DestBB, update those to go
// through the split block, making those edges non-critical as well (and
// reducing the number of phi entries in the DestBB if relevant).
if (MergeIdenticalEdges) {
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
if (TI->getSuccessor(i) != DestBB) continue;
// Remove an entry for TIBB from DestBB phi nodes.
DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
// We found another edge to DestBB, go to NewBB instead.
TI->setSuccessor(i, NewBB);
}
}
// If we don't have a pass object, we can't update anything...
if (P == 0) return NewBB;
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
// If we have nothing to update, just return.
if (DT == 0 && LI == 0 && PI == 0)
return NewBB;
// Now update analysis information. Since the only predecessor of NewBB is
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
// anything, as there are other successors of DestBB. However, if all other
// predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
// loop header) then NewBB dominates DestBB.
SmallVector<BasicBlock*, 8> OtherPreds;
// If there is a PHI in the block, loop over predecessors with it, which is
// faster than iterating pred_begin/end.
if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingBlock(i) != NewBB)
OtherPreds.push_back(PN->getIncomingBlock(i));
} else {
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
I != E; ++I) {
BasicBlock *P = *I;
if (P != NewBB)
OtherPreds.push_back(P);
}
}
bool NewBBDominatesDestBB = true;
// Should we update DominatorTree information?
if (DT) {
DomTreeNode *TINode = DT->getNode(TIBB);
// The new block is not the immediate dominator for any other nodes, but
// TINode is the immediate dominator for the new node.
//
if (TINode) { // Don't break unreachable code!
DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
DomTreeNode *DestBBNode = 0;
// If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
if (!OtherPreds.empty()) {
DestBBNode = DT->getNode(DestBB);
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
OtherPreds.pop_back();
}
OtherPreds.clear();
}
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
// doesn't dominate anything.
if (NewBBDominatesDestBB) {
if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
DT->changeImmediateDominator(DestBBNode, NewBBNode);
}
}
}
// Update LoopInfo if it is around.
if (LI) {
if (Loop *TIL = LI->getLoopFor(TIBB)) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NewBB, LI->getBase());
} else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == DestBB &&
"Should not create irreducible loops!");
if (Loop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NewBB, LI->getBase());
}
}
// If TIBB is in a loop and DestBB is outside of that loop, split the
// other exit blocks of the loop that also have predecessors outside
// the loop, to maintain a LoopSimplify guarantee.
if (!TIL->contains(DestBB) &&
P->mustPreserveAnalysisID(LoopSimplifyID)) {
assert(!TIL->contains(NewBB) &&
"Split point for loop exit is contained in loop!");
// Update LCSSA form in the newly created exit block.
if (P->mustPreserveAnalysisID(LCSSAID))
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
// For each unique exit block...
// FIXME: This code is functionally equivalent to the corresponding
// loop in LoopSimplify.
SmallVector<BasicBlock *, 4> ExitBlocks;
TIL->getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
// Collect all the preds that are inside the loop, and note
// whether there are any preds outside the loop.
SmallVector<BasicBlock *, 4> Preds;
bool HasPredOutsideOfLoop = false;
BasicBlock *Exit = ExitBlocks[i];
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
I != E; ++I) {
BasicBlock *P = *I;
if (TIL->contains(P)) {
if (isa<IndirectBrInst>(P->getTerminator())) {
Preds.clear();
break;
}
Preds.push_back(P);
} else {
HasPredOutsideOfLoop = true;
}
}
// If there are any preds not in the loop, we'll need to split
// the edges. The Preds.empty() check is needed because a block
// may appear multiple times in the list. We can't use
// getUniqueExitBlocks above because that depends on LoopSimplify
// form, which we're in the process of restoring!
if (!Preds.empty() && HasPredOutsideOfLoop) {
if (!Exit->isLandingPad()) {
BasicBlock *NewExitBB =
SplitBlockPredecessors(Exit, Preds, "split", P);
if (P->mustPreserveAnalysisID(LCSSAID))
createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
} else if (SplitLandingPads) {
SmallVector<BasicBlock*, 8> NewBBs;
SplitLandingPadPredecessors(Exit, Preds,
".split1", ".split2",
P, NewBBs);
if (P->mustPreserveAnalysisID(LCSSAID))
createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
}
}
}
}
// LCSSA form was updated above for the case where LoopSimplify is
// available, which means that all predecessors of loop exit blocks
// are within the loop. Without LoopSimplify form, it would be
// necessary to insert a new phi.
assert((!P->mustPreserveAnalysisID(LCSSAID) ||
P->mustPreserveAnalysisID(LoopSimplifyID)) &&
"SplitCriticalEdge doesn't know how to update LCCSA form "
"without LoopSimplify!");
}
}
// Update ProfileInfo if it is around.
if (PI)
PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
return NewBB;
}