mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
da4afc0c02
This reverts commit 0345d88de654259ae90494bf9b015416e2cccacb. Google internal backend uses EntrySU, we are looking into removing dependency on it. Differential Revision: https://reviews.llvm.org/D88018
702 lines
24 KiB
C++
702 lines
24 KiB
C++
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/AntiDepBreaker.h"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
|
|
STATISTIC(NumNoops, "Number of noops inserted");
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
|
|
|
|
// Post-RA scheduling is enabled with
|
|
// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
|
|
// override the target.
|
|
static cl::opt<bool>
|
|
EnablePostRAScheduler("post-RA-scheduler",
|
|
cl::desc("Enable scheduling after register allocation"),
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<std::string>
|
|
EnableAntiDepBreaking("break-anti-dependencies",
|
|
cl::desc("Break post-RA scheduling anti-dependencies: "
|
|
"\"critical\", \"all\", or \"none\""),
|
|
cl::init("none"), cl::Hidden);
|
|
|
|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
|
|
static cl::opt<int>
|
|
DebugDiv("postra-sched-debugdiv",
|
|
cl::desc("Debug control MBBs that are scheduled"),
|
|
cl::init(0), cl::Hidden);
|
|
static cl::opt<int>
|
|
DebugMod("postra-sched-debugmod",
|
|
cl::desc("Debug control MBBs that are scheduled"),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
AntiDepBreaker::~AntiDepBreaker() { }
|
|
|
|
namespace {
|
|
class PostRAScheduler : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII = nullptr;
|
|
RegisterClassInfo RegClassInfo;
|
|
|
|
public:
|
|
static char ID;
|
|
PostRAScheduler() : MachineFunctionPass(ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
private:
|
|
bool enablePostRAScheduler(
|
|
const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
|
|
TargetSubtargetInfo::AntiDepBreakMode &Mode,
|
|
TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
|
|
};
|
|
char PostRAScheduler::ID = 0;
|
|
|
|
class SchedulePostRATDList : public ScheduleDAGInstrs {
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
LatencyPriorityQueue AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands becomes available, the instruction is
|
|
/// added to the AvailableQueue.
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
ScheduleHazardRecognizer *HazardRec;
|
|
|
|
/// AntiDepBreak - Anti-dependence breaking object, or NULL if none
|
|
AntiDepBreaker *AntiDepBreak;
|
|
|
|
/// AA - AliasAnalysis for making memory reference queries.
|
|
AliasAnalysis *AA;
|
|
|
|
/// The schedule. Null SUnit*'s represent noop instructions.
|
|
std::vector<SUnit*> Sequence;
|
|
|
|
/// Ordered list of DAG postprocessing steps.
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
|
|
|
|
/// The index in BB of RegionEnd.
|
|
///
|
|
/// This is the instruction number from the top of the current block, not
|
|
/// the SlotIndex. It is only used by the AntiDepBreaker.
|
|
unsigned EndIndex;
|
|
|
|
public:
|
|
SchedulePostRATDList(
|
|
MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
|
|
const RegisterClassInfo &,
|
|
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
|
|
SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
|
|
|
|
~SchedulePostRATDList() override;
|
|
|
|
/// startBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void startBlock(MachineBasicBlock *BB) override;
|
|
|
|
// Set the index of RegionEnd within the current BB.
|
|
void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
|
|
|
|
/// Initialize the scheduler state for the next scheduling region.
|
|
void enterRegion(MachineBasicBlock *bb,
|
|
MachineBasicBlock::iterator begin,
|
|
MachineBasicBlock::iterator end,
|
|
unsigned regioninstrs) override;
|
|
|
|
/// Notify that the scheduler has finished scheduling the current region.
|
|
void exitRegion() override;
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void schedule() override;
|
|
|
|
void EmitSchedule();
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void Observe(MachineInstr &MI, unsigned Count);
|
|
|
|
/// finishBlock - Clean up register live-range state.
|
|
///
|
|
void finishBlock() override;
|
|
|
|
private:
|
|
/// Apply each ScheduleDAGMutation step in order.
|
|
void postprocessDAG();
|
|
|
|
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
|
void ReleaseSuccessors(SUnit *SU);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
|
|
void dumpSchedule() const;
|
|
void emitNoop(unsigned CurCycle);
|
|
};
|
|
}
|
|
|
|
char &llvm::PostRASchedulerID = PostRAScheduler::ID;
|
|
|
|
INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
|
|
"Post RA top-down list latency scheduler", false, false)
|
|
|
|
SchedulePostRATDList::SchedulePostRATDList(
|
|
MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
|
|
const RegisterClassInfo &RCI,
|
|
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
|
|
SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
|
|
: ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
|
|
|
|
const InstrItineraryData *InstrItins =
|
|
MF.getSubtarget().getInstrItineraryData();
|
|
HazardRec =
|
|
MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
|
|
InstrItins, this);
|
|
MF.getSubtarget().getPostRAMutations(Mutations);
|
|
|
|
assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
|
|
MRI.tracksLiveness()) &&
|
|
"Live-ins must be accurate for anti-dependency breaking");
|
|
AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL)
|
|
? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs)
|
|
: ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL)
|
|
? createCriticalAntiDepBreaker(MF, RCI)
|
|
: nullptr));
|
|
}
|
|
|
|
SchedulePostRATDList::~SchedulePostRATDList() {
|
|
delete HazardRec;
|
|
delete AntiDepBreak;
|
|
}
|
|
|
|
/// Initialize state associated with the next scheduling region.
|
|
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
|
|
MachineBasicBlock::iterator begin,
|
|
MachineBasicBlock::iterator end,
|
|
unsigned regioninstrs) {
|
|
ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
|
|
Sequence.clear();
|
|
}
|
|
|
|
/// Print the schedule before exiting the region.
|
|
void SchedulePostRATDList::exitRegion() {
|
|
LLVM_DEBUG({
|
|
dbgs() << "*** Final schedule ***\n";
|
|
dumpSchedule();
|
|
dbgs() << '\n';
|
|
});
|
|
ScheduleDAGInstrs::exitRegion();
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// dumpSchedule - dump the scheduled Sequence.
|
|
LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i])
|
|
dumpNode(*SU);
|
|
else
|
|
dbgs() << "**** NOOP ****\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool PostRAScheduler::enablePostRAScheduler(
|
|
const TargetSubtargetInfo &ST,
|
|
CodeGenOpt::Level OptLevel,
|
|
TargetSubtargetInfo::AntiDepBreakMode &Mode,
|
|
TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
|
|
Mode = ST.getAntiDepBreakMode();
|
|
ST.getCriticalPathRCs(CriticalPathRCs);
|
|
|
|
// Check for explicit enable/disable of post-ra scheduling.
|
|
if (EnablePostRAScheduler.getPosition() > 0)
|
|
return EnablePostRAScheduler;
|
|
|
|
return ST.enablePostRAScheduler() &&
|
|
OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
|
|
}
|
|
|
|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
|
if (skipFunction(Fn.getFunction()))
|
|
return false;
|
|
|
|
TII = Fn.getSubtarget().getInstrInfo();
|
|
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
|
|
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
|
|
|
|
RegClassInfo.runOnMachineFunction(Fn);
|
|
|
|
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
|
|
TargetSubtargetInfo::ANTIDEP_NONE;
|
|
SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
|
|
|
|
// Check that post-RA scheduling is enabled for this target.
|
|
// This may upgrade the AntiDepMode.
|
|
if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
|
|
AntiDepMode, CriticalPathRCs))
|
|
return false;
|
|
|
|
// Check for antidep breaking override...
|
|
if (EnableAntiDepBreaking.getPosition() > 0) {
|
|
AntiDepMode = (EnableAntiDepBreaking == "all")
|
|
? TargetSubtargetInfo::ANTIDEP_ALL
|
|
: ((EnableAntiDepBreaking == "critical")
|
|
? TargetSubtargetInfo::ANTIDEP_CRITICAL
|
|
: TargetSubtargetInfo::ANTIDEP_NONE);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
|
|
|
|
SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
|
|
CriticalPathRCs);
|
|
|
|
// Loop over all of the basic blocks
|
|
for (auto &MBB : Fn) {
|
|
#ifndef NDEBUG
|
|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
|
|
if (DebugDiv > 0) {
|
|
static int bbcnt = 0;
|
|
if (bbcnt++ % DebugDiv != DebugMod)
|
|
continue;
|
|
dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
|
|
<< printMBBReference(MBB) << " ***\n";
|
|
}
|
|
#endif
|
|
|
|
// Initialize register live-range state for scheduling in this block.
|
|
Scheduler.startBlock(&MBB);
|
|
|
|
// Schedule each sequence of instructions not interrupted by a label
|
|
// or anything else that effectively needs to shut down scheduling.
|
|
MachineBasicBlock::iterator Current = MBB.end();
|
|
unsigned Count = MBB.size(), CurrentCount = Count;
|
|
for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
|
|
MachineInstr &MI = *std::prev(I);
|
|
--Count;
|
|
// Calls are not scheduling boundaries before register allocation, but
|
|
// post-ra we don't gain anything by scheduling across calls since we
|
|
// don't need to worry about register pressure.
|
|
if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
|
|
Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
|
|
Scheduler.setEndIndex(CurrentCount);
|
|
Scheduler.schedule();
|
|
Scheduler.exitRegion();
|
|
Scheduler.EmitSchedule();
|
|
Current = &MI;
|
|
CurrentCount = Count;
|
|
Scheduler.Observe(MI, CurrentCount);
|
|
}
|
|
I = MI;
|
|
if (MI.isBundle())
|
|
Count -= MI.getBundleSize();
|
|
}
|
|
assert(Count == 0 && "Instruction count mismatch!");
|
|
assert((MBB.begin() == Current || CurrentCount != 0) &&
|
|
"Instruction count mismatch!");
|
|
Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
|
|
Scheduler.setEndIndex(CurrentCount);
|
|
Scheduler.schedule();
|
|
Scheduler.exitRegion();
|
|
Scheduler.EmitSchedule();
|
|
|
|
// Clean up register live-range state.
|
|
Scheduler.finishBlock();
|
|
|
|
// Update register kills
|
|
Scheduler.fixupKills(MBB);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// StartBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::startBlock(BB);
|
|
|
|
// Reset the hazard recognizer and anti-dep breaker.
|
|
HazardRec->Reset();
|
|
if (AntiDepBreak)
|
|
AntiDepBreak->StartBlock(BB);
|
|
}
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void SchedulePostRATDList::schedule() {
|
|
// Build the scheduling graph.
|
|
buildSchedGraph(AA);
|
|
|
|
if (AntiDepBreak) {
|
|
unsigned Broken =
|
|
AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
|
|
EndIndex, DbgValues);
|
|
|
|
if (Broken != 0) {
|
|
// We made changes. Update the dependency graph.
|
|
// Theoretically we could update the graph in place:
|
|
// When a live range is changed to use a different register, remove
|
|
// the def's anti-dependence *and* output-dependence edges due to
|
|
// that register, and add new anti-dependence and output-dependence
|
|
// edges based on the next live range of the register.
|
|
ScheduleDAG::clearDAG();
|
|
buildSchedGraph(AA);
|
|
|
|
NumFixedAnti += Broken;
|
|
}
|
|
}
|
|
|
|
postprocessDAG();
|
|
|
|
LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
|
|
LLVM_DEBUG(dump());
|
|
|
|
AvailableQueue.initNodes(SUnits);
|
|
ListScheduleTopDown();
|
|
AvailableQueue.releaseState();
|
|
}
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
|
|
if (AntiDepBreak)
|
|
AntiDepBreak->Observe(MI, Count, EndIndex);
|
|
}
|
|
|
|
/// FinishBlock - Clean up register live-range state.
|
|
///
|
|
void SchedulePostRATDList::finishBlock() {
|
|
if (AntiDepBreak)
|
|
AntiDepBreak->FinishBlock();
|
|
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::finishBlock();
|
|
}
|
|
|
|
/// Apply each ScheduleDAGMutation step in order.
|
|
void SchedulePostRATDList::postprocessDAG() {
|
|
for (auto &M : Mutations)
|
|
M->apply(this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero.
|
|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
|
SUnit *SuccSU = SuccEdge->getSUnit();
|
|
|
|
if (SuccEdge->isWeak()) {
|
|
--SuccSU->WeakPredsLeft;
|
|
return;
|
|
}
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
dbgs() << "*** Scheduling failed! ***\n";
|
|
dumpNode(*SuccSU);
|
|
dbgs() << " has been released too many times!\n";
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
#endif
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
// Standard scheduler algorithms will recompute the depth of the successor
|
|
// here as such:
|
|
// SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
|
|
//
|
|
// However, we lazily compute node depth instead. Note that
|
|
// ScheduleNodeTopDown has already updated the depth of this node which causes
|
|
// all descendents to be marked dirty. Setting the successor depth explicitly
|
|
// here would cause depth to be recomputed for all its ancestors. If the
|
|
// successor is not yet ready (because of a transitively redundant edge) then
|
|
// this causes depth computation to be quadratic in the size of the DAG.
|
|
|
|
// If all the node's predecessors are scheduled, this node is ready
|
|
// to be scheduled. Ignore the special ExitSU node.
|
|
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
|
|
PendingQueue.push_back(SuccSU);
|
|
}
|
|
|
|
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
|
|
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
ReleaseSucc(SU, &*I);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
|
|
LLVM_DEBUG(dumpNode(*SU));
|
|
|
|
Sequence.push_back(SU);
|
|
assert(CurCycle >= SU->getDepth() &&
|
|
"Node scheduled above its depth!");
|
|
SU->setDepthToAtLeast(CurCycle);
|
|
|
|
ReleaseSuccessors(SU);
|
|
SU->isScheduled = true;
|
|
AvailableQueue.scheduledNode(SU);
|
|
}
|
|
|
|
/// emitNoop - Add a noop to the current instruction sequence.
|
|
void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
|
|
LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(nullptr); // NULL here means noop
|
|
++NumNoops;
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void SchedulePostRATDList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// We're scheduling top-down but we're visiting the regions in
|
|
// bottom-up order, so we don't know the hazards at the start of a
|
|
// region. So assume no hazards (this should usually be ok as most
|
|
// blocks are a single region).
|
|
HazardRec->Reset();
|
|
|
|
// Release any successors of the special Entry node.
|
|
ReleaseSuccessors(&EntrySU);
|
|
|
|
// Add all leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
|
|
AvailableQueue.push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// In any cycle where we can't schedule any instructions, we must
|
|
// stall or emit a noop, depending on the target.
|
|
bool CycleHasInsts = false;
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
unsigned MinDepth = ~0u;
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i]->getDepth() <= CurCycle) {
|
|
AvailableQueue.push(PendingQueue[i]);
|
|
PendingQueue[i]->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else if (PendingQueue[i]->getDepth() < MinDepth)
|
|
MinDepth = PendingQueue[i]->getDepth();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
|
|
AvailableQueue.dump(this));
|
|
|
|
SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
|
|
bool HasNoopHazards = false;
|
|
while (!AvailableQueue.empty()) {
|
|
SUnit *CurSUnit = AvailableQueue.pop();
|
|
|
|
ScheduleHazardRecognizer::HazardType HT =
|
|
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
|
|
if (HT == ScheduleHazardRecognizer::NoHazard) {
|
|
if (HazardRec->ShouldPreferAnother(CurSUnit)) {
|
|
if (!NotPreferredSUnit) {
|
|
// If this is the first non-preferred node for this cycle, then
|
|
// record it and continue searching for a preferred node. If this
|
|
// is not the first non-preferred node, then treat it as though
|
|
// there had been a hazard.
|
|
NotPreferredSUnit = CurSUnit;
|
|
continue;
|
|
}
|
|
} else {
|
|
FoundSUnit = CurSUnit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
}
|
|
|
|
// If we have a non-preferred node, push it back onto the available list.
|
|
// If we did not find a preferred node, then schedule this first
|
|
// non-preferred node.
|
|
if (NotPreferredSUnit) {
|
|
if (!FoundSUnit) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "*** Will schedule a non-preferred instruction...\n");
|
|
FoundSUnit = NotPreferredSUnit;
|
|
} else {
|
|
AvailableQueue.push(NotPreferredSUnit);
|
|
}
|
|
|
|
NotPreferredSUnit = nullptr;
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
if (!NotReady.empty()) {
|
|
AvailableQueue.push_all(NotReady);
|
|
NotReady.clear();
|
|
}
|
|
|
|
// If we found a node to schedule...
|
|
if (FoundSUnit) {
|
|
// If we need to emit noops prior to this instruction, then do so.
|
|
unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
|
|
for (unsigned i = 0; i != NumPreNoops; ++i)
|
|
emitNoop(CurCycle);
|
|
|
|
// ... schedule the node...
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
HazardRec->EmitInstruction(FoundSUnit);
|
|
CycleHasInsts = true;
|
|
if (HazardRec->atIssueLimit()) {
|
|
LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
|
|
<< '\n');
|
|
HazardRec->AdvanceCycle();
|
|
++CurCycle;
|
|
CycleHasInsts = false;
|
|
}
|
|
} else {
|
|
if (CycleHasInsts) {
|
|
LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
|
|
HazardRec->AdvanceCycle();
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem,
|
|
// just advance the current cycle and try again.
|
|
LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
emitNoop(CurCycle);
|
|
}
|
|
|
|
++CurCycle;
|
|
CycleHasInsts = false;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
|
|
unsigned Noops = 0;
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
|
|
if (!Sequence[i])
|
|
++Noops;
|
|
assert(Sequence.size() - Noops == ScheduledNodes &&
|
|
"The number of nodes scheduled doesn't match the expected number!");
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
// EmitSchedule - Emit the machine code in scheduled order.
|
|
void SchedulePostRATDList::EmitSchedule() {
|
|
RegionBegin = RegionEnd;
|
|
|
|
// If first instruction was a DBG_VALUE then put it back.
|
|
if (FirstDbgValue)
|
|
BB->splice(RegionEnd, BB, FirstDbgValue);
|
|
|
|
// Then re-insert them according to the given schedule.
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i])
|
|
BB->splice(RegionEnd, BB, SU->getInstr());
|
|
else
|
|
// Null SUnit* is a noop.
|
|
TII->insertNoop(*BB, RegionEnd);
|
|
|
|
// Update the Begin iterator, as the first instruction in the block
|
|
// may have been scheduled later.
|
|
if (i == 0)
|
|
RegionBegin = std::prev(RegionEnd);
|
|
}
|
|
|
|
// Reinsert any remaining debug_values.
|
|
for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
|
|
DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
|
|
std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
|
|
MachineInstr *DbgValue = P.first;
|
|
MachineBasicBlock::iterator OrigPrivMI = P.second;
|
|
BB->splice(++OrigPrivMI, BB, DbgValue);
|
|
}
|
|
DbgValues.clear();
|
|
FirstDbgValue = nullptr;
|
|
}
|