1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/ObjectYAML/MinidumpYAML.cpp
Pavel Labath 5feaeff3dc MinidumpYAML: move serialization code to MinidumpEmitter.cpp
Summary:
The code for serializing minidumps was living in MinidumpYAML.cpp
so that it would be accessible from unit tests. While this had its
advantages, it was also unfortunate because it broke symmetry with all
other yaml2obj serializers.

Fortunately, nowadays all of yaml2obj is a library, so we don't need to
do anything special. This patch improves the code consistency by moving
the serialization code to MinidumpEmitter.cpp to match the style used in
other backends. It also removes the writeAsBinary entry point in favor
of the more general convertYAML interface.

This patch is just massaging the code a bit. There shouldn't be any
functional change here.

Reviewers: jhenderson, abrachet

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66474

llvm-svn: 369517
2019-08-21 11:30:48 +00:00

467 lines
18 KiB
C++

//===- MinidumpYAML.cpp - Minidump YAMLIO implementation ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ObjectYAML/MinidumpYAML.h"
#include "llvm/Support/Allocator.h"
using namespace llvm;
using namespace llvm::MinidumpYAML;
using namespace llvm::minidump;
/// Perform an optional yaml-mapping of an endian-aware type EndianType. The
/// only purpose of this function is to avoid casting the Default value to the
/// endian type;
template <typename EndianType>
static inline void mapOptional(yaml::IO &IO, const char *Key, EndianType &Val,
typename EndianType::value_type Default) {
IO.mapOptional(Key, Val, EndianType(Default));
}
/// Yaml-map an endian-aware type EndianType as some other type MapType.
template <typename MapType, typename EndianType>
static inline void mapRequiredAs(yaml::IO &IO, const char *Key,
EndianType &Val) {
MapType Mapped = static_cast<typename EndianType::value_type>(Val);
IO.mapRequired(Key, Mapped);
Val = static_cast<typename EndianType::value_type>(Mapped);
}
/// Perform an optional yaml-mapping of an endian-aware type EndianType as some
/// other type MapType.
template <typename MapType, typename EndianType>
static inline void mapOptionalAs(yaml::IO &IO, const char *Key, EndianType &Val,
MapType Default) {
MapType Mapped = static_cast<typename EndianType::value_type>(Val);
IO.mapOptional(Key, Mapped, Default);
Val = static_cast<typename EndianType::value_type>(Mapped);
}
namespace {
/// Return the appropriate yaml Hex type for a given endian-aware type.
template <typename EndianType> struct HexType;
template <> struct HexType<support::ulittle16_t> { using type = yaml::Hex16; };
template <> struct HexType<support::ulittle32_t> { using type = yaml::Hex32; };
template <> struct HexType<support::ulittle64_t> { using type = yaml::Hex64; };
} // namespace
/// Yaml-map an endian-aware type as an appropriately-sized hex value.
template <typename EndianType>
static inline void mapRequiredHex(yaml::IO &IO, const char *Key,
EndianType &Val) {
mapRequiredAs<typename HexType<EndianType>::type>(IO, Key, Val);
}
/// Perform an optional yaml-mapping of an endian-aware type as an
/// appropriately-sized hex value.
template <typename EndianType>
static inline void mapOptionalHex(yaml::IO &IO, const char *Key,
EndianType &Val,
typename EndianType::value_type Default) {
mapOptionalAs<typename HexType<EndianType>::type>(IO, Key, Val, Default);
}
Stream::~Stream() = default;
Stream::StreamKind Stream::getKind(StreamType Type) {
switch (Type) {
case StreamType::MemoryList:
return StreamKind::MemoryList;
case StreamType::ModuleList:
return StreamKind::ModuleList;
case StreamType::SystemInfo:
return StreamKind::SystemInfo;
case StreamType::LinuxCPUInfo:
case StreamType::LinuxProcStatus:
case StreamType::LinuxLSBRelease:
case StreamType::LinuxCMDLine:
case StreamType::LinuxMaps:
case StreamType::LinuxProcStat:
case StreamType::LinuxProcUptime:
return StreamKind::TextContent;
case StreamType::ThreadList:
return StreamKind::ThreadList;
default:
return StreamKind::RawContent;
}
}
std::unique_ptr<Stream> Stream::create(StreamType Type) {
StreamKind Kind = getKind(Type);
switch (Kind) {
case StreamKind::MemoryList:
return std::make_unique<MemoryListStream>();
case StreamKind::ModuleList:
return std::make_unique<ModuleListStream>();
case StreamKind::RawContent:
return std::make_unique<RawContentStream>(Type);
case StreamKind::SystemInfo:
return std::make_unique<SystemInfoStream>();
case StreamKind::TextContent:
return std::make_unique<TextContentStream>(Type);
case StreamKind::ThreadList:
return std::make_unique<ThreadListStream>();
}
llvm_unreachable("Unhandled stream kind!");
}
void yaml::ScalarEnumerationTraits<ProcessorArchitecture>::enumeration(
IO &IO, ProcessorArchitecture &Arch) {
#define HANDLE_MDMP_ARCH(CODE, NAME) \
IO.enumCase(Arch, #NAME, ProcessorArchitecture::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex16>(Arch);
}
void yaml::ScalarEnumerationTraits<OSPlatform>::enumeration(IO &IO,
OSPlatform &Plat) {
#define HANDLE_MDMP_PLATFORM(CODE, NAME) \
IO.enumCase(Plat, #NAME, OSPlatform::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex32>(Plat);
}
void yaml::ScalarEnumerationTraits<StreamType>::enumeration(IO &IO,
StreamType &Type) {
#define HANDLE_MDMP_STREAM_TYPE(CODE, NAME) \
IO.enumCase(Type, #NAME, StreamType::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex32>(Type);
}
void yaml::MappingTraits<CPUInfo::ArmInfo>::mapping(IO &IO,
CPUInfo::ArmInfo &Info) {
mapRequiredHex(IO, "CPUID", Info.CPUID);
mapOptionalHex(IO, "ELF hwcaps", Info.ElfHWCaps, 0);
}
namespace {
template <std::size_t N> struct FixedSizeHex {
FixedSizeHex(uint8_t (&Storage)[N]) : Storage(Storage) {}
uint8_t (&Storage)[N];
};
} // namespace
namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeHex<N>> {
static void output(const FixedSizeHex<N> &Fixed, void *, raw_ostream &OS) {
OS << toHex(makeArrayRef(Fixed.Storage));
}
static StringRef input(StringRef Scalar, void *, FixedSizeHex<N> &Fixed) {
if (!all_of(Scalar, isHexDigit))
return "Invalid hex digit in input";
if (Scalar.size() < 2 * N)
return "String too short";
if (Scalar.size() > 2 * N)
return "String too long";
copy(fromHex(Scalar), Fixed.Storage);
return "";
}
static QuotingType mustQuote(StringRef S) { return QuotingType::None; }
};
} // namespace yaml
} // namespace llvm
void yaml::MappingTraits<CPUInfo::OtherInfo>::mapping(
IO &IO, CPUInfo::OtherInfo &Info) {
FixedSizeHex<sizeof(Info.ProcessorFeatures)> Features(Info.ProcessorFeatures);
IO.mapRequired("Features", Features);
}
namespace {
/// A type which only accepts strings of a fixed size for yaml conversion.
template <std::size_t N> struct FixedSizeString {
FixedSizeString(char (&Storage)[N]) : Storage(Storage) {}
char (&Storage)[N];
};
} // namespace
namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeString<N>> {
static void output(const FixedSizeString<N> &Fixed, void *, raw_ostream &OS) {
OS << StringRef(Fixed.Storage, N);
}
static StringRef input(StringRef Scalar, void *, FixedSizeString<N> &Fixed) {
if (Scalar.size() < N)
return "String too short";
if (Scalar.size() > N)
return "String too long";
copy(Scalar, Fixed.Storage);
return "";
}
static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
};
} // namespace yaml
} // namespace llvm
void yaml::MappingTraits<CPUInfo::X86Info>::mapping(IO &IO,
CPUInfo::X86Info &Info) {
FixedSizeString<sizeof(Info.VendorID)> VendorID(Info.VendorID);
IO.mapRequired("Vendor ID", VendorID);
mapRequiredHex(IO, "Version Info", Info.VersionInfo);
mapRequiredHex(IO, "Feature Info", Info.FeatureInfo);
mapOptionalHex(IO, "AMD Extended Features", Info.AMDExtendedFeatures, 0);
}
void yaml::MappingTraits<VSFixedFileInfo>::mapping(IO &IO,
VSFixedFileInfo &Info) {
mapOptionalHex(IO, "Signature", Info.Signature, 0);
mapOptionalHex(IO, "Struct Version", Info.StructVersion, 0);
mapOptionalHex(IO, "File Version High", Info.FileVersionHigh, 0);
mapOptionalHex(IO, "File Version Low", Info.FileVersionLow, 0);
mapOptionalHex(IO, "Product Version High", Info.ProductVersionHigh, 0);
mapOptionalHex(IO, "Product Version Low", Info.ProductVersionLow, 0);
mapOptionalHex(IO, "File Flags Mask", Info.FileFlagsMask, 0);
mapOptionalHex(IO, "File Flags", Info.FileFlags, 0);
mapOptionalHex(IO, "File OS", Info.FileOS, 0);
mapOptionalHex(IO, "File Type", Info.FileType, 0);
mapOptionalHex(IO, "File Subtype", Info.FileSubtype, 0);
mapOptionalHex(IO, "File Date High", Info.FileDateHigh, 0);
mapOptionalHex(IO, "File Date Low", Info.FileDateLow, 0);
}
void yaml::MappingTraits<ModuleListStream::entry_type>::mapping(
IO &IO, ModuleListStream::entry_type &M) {
mapRequiredHex(IO, "Base of Image", M.Entry.BaseOfImage);
mapRequiredHex(IO, "Size of Image", M.Entry.SizeOfImage);
mapOptionalHex(IO, "Checksum", M.Entry.Checksum, 0);
IO.mapOptional("Time Date Stamp", M.Entry.TimeDateStamp,
support::ulittle32_t(0));
IO.mapRequired("Module Name", M.Name);
IO.mapOptional("Version Info", M.Entry.VersionInfo, VSFixedFileInfo());
IO.mapRequired("CodeView Record", M.CvRecord);
IO.mapOptional("Misc Record", M.MiscRecord, yaml::BinaryRef());
mapOptionalHex(IO, "Reserved0", M.Entry.Reserved0, 0);
mapOptionalHex(IO, "Reserved1", M.Entry.Reserved1, 0);
}
static void streamMapping(yaml::IO &IO, RawContentStream &Stream) {
IO.mapOptional("Content", Stream.Content);
IO.mapOptional("Size", Stream.Size, Stream.Content.binary_size());
}
static StringRef streamValidate(RawContentStream &Stream) {
if (Stream.Size.value < Stream.Content.binary_size())
return "Stream size must be greater or equal to the content size";
return "";
}
void yaml::MappingTraits<MemoryListStream::entry_type>::mapping(
IO &IO, MemoryListStream::entry_type &Range) {
MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
IO, Range.Entry, Range.Content);
}
static void streamMapping(yaml::IO &IO, MemoryListStream &Stream) {
IO.mapRequired("Memory Ranges", Stream.Entries);
}
static void streamMapping(yaml::IO &IO, ModuleListStream &Stream) {
IO.mapRequired("Modules", Stream.Entries);
}
static void streamMapping(yaml::IO &IO, SystemInfoStream &Stream) {
SystemInfo &Info = Stream.Info;
IO.mapRequired("Processor Arch", Info.ProcessorArch);
mapOptional(IO, "Processor Level", Info.ProcessorLevel, 0);
mapOptional(IO, "Processor Revision", Info.ProcessorRevision, 0);
IO.mapOptional("Number of Processors", Info.NumberOfProcessors, 0);
IO.mapOptional("Product type", Info.ProductType, 0);
mapOptional(IO, "Major Version", Info.MajorVersion, 0);
mapOptional(IO, "Minor Version", Info.MinorVersion, 0);
mapOptional(IO, "Build Number", Info.BuildNumber, 0);
IO.mapRequired("Platform ID", Info.PlatformId);
IO.mapOptional("CSD Version", Stream.CSDVersion, "");
mapOptionalHex(IO, "Suite Mask", Info.SuiteMask, 0);
mapOptionalHex(IO, "Reserved", Info.Reserved, 0);
switch (static_cast<ProcessorArchitecture>(Info.ProcessorArch)) {
case ProcessorArchitecture::X86:
case ProcessorArchitecture::AMD64:
IO.mapOptional("CPU", Info.CPU.X86);
break;
case ProcessorArchitecture::ARM:
case ProcessorArchitecture::ARM64:
IO.mapOptional("CPU", Info.CPU.Arm);
break;
default:
IO.mapOptional("CPU", Info.CPU.Other);
break;
}
}
static void streamMapping(yaml::IO &IO, TextContentStream &Stream) {
IO.mapOptional("Text", Stream.Text);
}
void yaml::MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
IO &IO, MemoryDescriptor &Memory, BinaryRef &Content) {
mapRequiredHex(IO, "Start of Memory Range", Memory.StartOfMemoryRange);
IO.mapRequired("Content", Content);
}
void yaml::MappingTraits<ThreadListStream::entry_type>::mapping(
IO &IO, ThreadListStream::entry_type &T) {
mapRequiredHex(IO, "Thread Id", T.Entry.ThreadId);
mapOptionalHex(IO, "Suspend Count", T.Entry.SuspendCount, 0);
mapOptionalHex(IO, "Priority Class", T.Entry.PriorityClass, 0);
mapOptionalHex(IO, "Priority", T.Entry.Priority, 0);
mapOptionalHex(IO, "Environment Block", T.Entry.EnvironmentBlock, 0);
IO.mapRequired("Context", T.Context);
IO.mapRequired("Stack", T.Entry.Stack, T.Stack);
}
static void streamMapping(yaml::IO &IO, ThreadListStream &Stream) {
IO.mapRequired("Threads", Stream.Entries);
}
void yaml::MappingTraits<std::unique_ptr<Stream>>::mapping(
yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
StreamType Type;
if (IO.outputting())
Type = S->Type;
IO.mapRequired("Type", Type);
if (!IO.outputting())
S = MinidumpYAML::Stream::create(Type);
switch (S->Kind) {
case MinidumpYAML::Stream::StreamKind::MemoryList:
streamMapping(IO, llvm::cast<MemoryListStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::ModuleList:
streamMapping(IO, llvm::cast<ModuleListStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::RawContent:
streamMapping(IO, llvm::cast<RawContentStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::SystemInfo:
streamMapping(IO, llvm::cast<SystemInfoStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::TextContent:
streamMapping(IO, llvm::cast<TextContentStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::ThreadList:
streamMapping(IO, llvm::cast<ThreadListStream>(*S));
break;
}
}
StringRef yaml::MappingTraits<std::unique_ptr<Stream>>::validate(
yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
switch (S->Kind) {
case MinidumpYAML::Stream::StreamKind::RawContent:
return streamValidate(cast<RawContentStream>(*S));
case MinidumpYAML::Stream::StreamKind::MemoryList:
case MinidumpYAML::Stream::StreamKind::ModuleList:
case MinidumpYAML::Stream::StreamKind::SystemInfo:
case MinidumpYAML::Stream::StreamKind::TextContent:
case MinidumpYAML::Stream::StreamKind::ThreadList:
return "";
}
llvm_unreachable("Fully covered switch above!");
}
void yaml::MappingTraits<Object>::mapping(IO &IO, Object &O) {
IO.mapTag("!minidump", true);
mapOptionalHex(IO, "Signature", O.Header.Signature, Header::MagicSignature);
mapOptionalHex(IO, "Version", O.Header.Version, Header::MagicVersion);
mapOptionalHex(IO, "Flags", O.Header.Flags, 0);
IO.mapRequired("Streams", O.Streams);
}
Expected<std::unique_ptr<Stream>>
Stream::create(const Directory &StreamDesc, const object::MinidumpFile &File) {
StreamKind Kind = getKind(StreamDesc.Type);
switch (Kind) {
case StreamKind::MemoryList: {
auto ExpectedList = File.getMemoryList();
if (!ExpectedList)
return ExpectedList.takeError();
std::vector<MemoryListStream::entry_type> Ranges;
for (const MemoryDescriptor &MD : *ExpectedList) {
auto ExpectedContent = File.getRawData(MD.Memory);
if (!ExpectedContent)
return ExpectedContent.takeError();
Ranges.push_back({MD, *ExpectedContent});
}
return std::make_unique<MemoryListStream>(std::move(Ranges));
}
case StreamKind::ModuleList: {
auto ExpectedList = File.getModuleList();
if (!ExpectedList)
return ExpectedList.takeError();
std::vector<ModuleListStream::entry_type> Modules;
for (const Module &M : *ExpectedList) {
auto ExpectedName = File.getString(M.ModuleNameRVA);
if (!ExpectedName)
return ExpectedName.takeError();
auto ExpectedCv = File.getRawData(M.CvRecord);
if (!ExpectedCv)
return ExpectedCv.takeError();
auto ExpectedMisc = File.getRawData(M.MiscRecord);
if (!ExpectedMisc)
return ExpectedMisc.takeError();
Modules.push_back(
{M, std::move(*ExpectedName), *ExpectedCv, *ExpectedMisc});
}
return std::make_unique<ModuleListStream>(std::move(Modules));
}
case StreamKind::RawContent:
return std::make_unique<RawContentStream>(StreamDesc.Type,
File.getRawStream(StreamDesc));
case StreamKind::SystemInfo: {
auto ExpectedInfo = File.getSystemInfo();
if (!ExpectedInfo)
return ExpectedInfo.takeError();
auto ExpectedCSDVersion = File.getString(ExpectedInfo->CSDVersionRVA);
if (!ExpectedCSDVersion)
return ExpectedInfo.takeError();
return std::make_unique<SystemInfoStream>(*ExpectedInfo,
std::move(*ExpectedCSDVersion));
}
case StreamKind::TextContent:
return std::make_unique<TextContentStream>(
StreamDesc.Type, toStringRef(File.getRawStream(StreamDesc)));
case StreamKind::ThreadList: {
auto ExpectedList = File.getThreadList();
if (!ExpectedList)
return ExpectedList.takeError();
std::vector<ThreadListStream::entry_type> Threads;
for (const Thread &T : *ExpectedList) {
auto ExpectedStack = File.getRawData(T.Stack.Memory);
if (!ExpectedStack)
return ExpectedStack.takeError();
auto ExpectedContext = File.getRawData(T.Context);
if (!ExpectedContext)
return ExpectedContext.takeError();
Threads.push_back({T, *ExpectedStack, *ExpectedContext});
}
return std::make_unique<ThreadListStream>(std::move(Threads));
}
}
llvm_unreachable("Unhandled stream kind!");
}
Expected<Object> Object::create(const object::MinidumpFile &File) {
std::vector<std::unique_ptr<Stream>> Streams;
Streams.reserve(File.streams().size());
for (const Directory &StreamDesc : File.streams()) {
auto ExpectedStream = Stream::create(StreamDesc, File);
if (!ExpectedStream)
return ExpectedStream.takeError();
Streams.push_back(std::move(*ExpectedStream));
}
return Object(File.header(), std::move(Streams));
}