1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Analysis/CFGPrinter.cpp
Sean Fertile 152672e597 Extend CFGPrinter and CallPrinter with Heat Colors
Extends the CFGPrinter and CallPrinter with heat colors based on heuristics or
profiling information. The colors are enabled by default and can be toggled
on/off for CFGPrinter by using the option -cfg-heat-colors for both
-dot-cfg[-only] and -view-cfg[-only].  Similarly, the colors can be toggled
on/off for CallPrinter by using the option -callgraph-heat-colors for both
-dot-callgraph and -view-callgraph.

Patch by Rodrigo Caetano Rocha!

Differential Revision: https://reviews.llvm.org/D40425

llvm-svn: 335996
2018-06-29 17:13:58 +00:00

333 lines
12 KiB
C++

//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a '-dot-cfg' analysis pass, which emits the
// cfg.<fnname>.dot file for each function in the program, with a graph of the
// CFG for that function.
//
// The other main feature of this file is that it implements the
// Function::viewCFG method, which is useful for debugging passes which operate
// on the CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Pass.h"
#include "llvm/Support/FileSystem.h"
using namespace llvm;
static cl::opt<bool> CFGHeatPerFunction("cfg-heat-per-function",
cl::init(false), cl::Hidden,
cl::desc("Heat CFG per function"));
static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
cl::Hidden,
cl::desc("Show heat colors in CFG"));
static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
cl::Hidden,
cl::desc("Use raw weights for labels. "
"Use percentages as default."));
static cl::opt<bool> ShowEdgeWeight("cfg-weights", cl::init(true), cl::Hidden,
cl::desc("Show edges labeled with weights"));
static void writeHeatCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool UseHeuristic, bool isSimple) {
std::string Filename = ("cfg." + F.getName() + ".dot").str();
errs() << "Writing '" << Filename << "'...";
std::error_code EC;
raw_fd_ostream File(Filename, EC, sys::fs::F_Text);
CFGDOTInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeuristic(UseHeuristic);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
if (!EC)
WriteGraph(File, &CFGInfo, isSimple);
else
errs() << " error opening file for writing!";
errs() << "\n";
}
static void writeAllCFGsToDotFile(Module &M,
function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
bool isSimple) {
bool UseHeuristic = true;
uint64_t MaxFreq = 0;
if (!CFGHeatPerFunction)
MaxFreq = getMaxFreq(M, LookupBFI, UseHeuristic);
for (auto &F : M) {
if (F.isDeclaration()) continue;
auto *BFI = LookupBFI(F);
auto *BPI = LookupBPI(F);
if (CFGHeatPerFunction)
MaxFreq = getMaxFreq(F, BFI, UseHeuristic);
writeHeatCFGToDotFile(F, BFI, BPI, MaxFreq, UseHeuristic, isSimple);
}
}
static void viewHeatCFG(Function &F, BlockFrequencyInfo *BFI,
BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool UseHeuristic, bool isSimple) {
CFGDOTInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeuristic(UseHeuristic);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
ViewGraph(&CFGInfo, "cfg." + F.getName(), isSimple);
}
static void viewAllCFGs(Module &M,
function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
bool isSimple) {
bool UseHeuristic = true;
uint64_t MaxFreq = 0;
if (!CFGHeatPerFunction)
MaxFreq = getMaxFreq(M, LookupBFI, UseHeuristic);
for (auto &F : M) {
if (F.isDeclaration()) continue;
auto *BFI = LookupBFI(F);
auto *BPI = LookupBPI(F);
if (CFGHeatPerFunction)
MaxFreq = getMaxFreq(F, BFI, UseHeuristic);
viewHeatCFG(F, BFI, BPI, MaxFreq, UseHeuristic, isSimple);
}
}
namespace {
struct CFGViewerLegacyPass : public ModulePass {
static char ID; // Pass identifcation, replacement for typeid
CFGViewerLegacyPass() : ModulePass(ID) {
initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
viewAllCFGs(M, LookupBFI, LookupBPI, /*isSimple=*/false);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
}
char CFGViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false, true)
PreservedAnalyses CFGViewerPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
viewAllCFGs(M, LookupBFI, LookupBPI, /*isSimple=*/false);
return PreservedAnalyses::all();
}
namespace {
struct CFGOnlyViewerLegacyPass : public ModulePass {
static char ID; // Pass identifcation, replacement for typeid
CFGOnlyViewerLegacyPass() : ModulePass(ID) {
initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
viewAllCFGs(M, LookupBFI, LookupBPI, /*isSimple=*/true);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
}
char CFGOnlyViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only",
"View CFG of function (with no function bodies)", false, true)
PreservedAnalyses CFGOnlyViewerPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
viewAllCFGs(M, LookupBFI, LookupBPI, /*isSimple=*/true);
return PreservedAnalyses::all();
}
namespace {
struct CFGPrinterLegacyPass : public ModulePass {
static char ID; // Pass identification, replacement for typeid
CFGPrinterLegacyPass() : ModulePass(ID) {
initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
writeAllCFGsToDotFile(M, LookupBFI, LookupBPI, /*isSimple=*/false);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
}
char CFGPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg", "Print CFG of function to 'dot' file",
false, true)
PreservedAnalyses CFGPrinterPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
writeAllCFGsToDotFile(M, LookupBFI, LookupBPI, /*isSimple=*/false);
return PreservedAnalyses::all();
}
namespace {
struct CFGOnlyPrinterLegacyPass : public ModulePass {
static char ID; // Pass identification, replacement for typeid
CFGOnlyPrinterLegacyPass() : ModulePass(ID) {
initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
writeAllCFGsToDotFile(M, LookupBFI, LookupBPI, /*isSimple=*/true);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
}
char CFGOnlyPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only",
"Print CFG of function to 'dot' file (with no function bodies)",
false, true)
PreservedAnalyses CFGOnlyPrinterPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
writeAllCFGsToDotFile(M, LookupBFI, LookupBPI, /*isSimple=*/true);
return PreservedAnalyses::all();
}
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function. This depends on there
/// being a 'dot' and 'gv' program in your path.
///
void Function::viewCFG() const {
CFGDOTInfo CFGInfo(this);
ViewGraph(&CFGInfo, "cfg" + getName());
}
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void Function::viewCFGOnly() const {
CFGDOTInfo CFGInfo(this);
ViewGraph(&CFGInfo, "cfg" + getName(), true);
}
ModulePass *llvm::createCFGPrinterLegacyPassPass() {
return new CFGPrinterLegacyPass();
}
ModulePass *llvm::createCFGOnlyPrinterLegacyPassPass() {
return new CFGOnlyPrinterLegacyPass();
}