1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/Lanai/LanaiInstrFormats.td
Hiroshi Inoue 18fa4f2e7a [NFC] fix trivial typos in comments
"the the" -> "the"

llvm-svn: 323074
2018-01-22 05:54:46 +00:00

562 lines
21 KiB
TableGen
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- LanaiInstrFormats.td - Lanai Instruction Formats ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
class InstLanai<dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction {
field bits<32> Inst;
field bits<32> SoftFail = 0;
let Size = 4;
let Namespace = "Lanai";
let DecoderNamespace = "Lanai";
bits<4> Opcode;
let Inst{31 - 28} = Opcode;
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;
}
//------------------------------------------------------------------------------
// Register Immediate (RI)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |0.A.A.A| . . . . | . . . . |F.H| . . . . . . . . . . . . . . . |
// -----------------------------------------------------------------
// opcode Rd Rs1 constant (16)
//
// Action:
// Rd <- Rs1 op constant
//
// Except for shift instructions, `H' determines whether the constant
// is in the high (1) or low (0) word. The other halfword is 0x0000,
// except for the `AND' instruction (`AAA' = 100), for which the other
// halfword is 0xFFFF, and shifts (`AAA' = 111), for which the constant is
// sign extended.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `AAA' specifies the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or `shift'
// (111). For the shift, `H' specifies a logical (0) or arithmetic (1)
// shift. The amount and direction of the shift are determined by the
// sign extended constant interpreted as a two's complement number. The
// shift operation is defined only for the range of:
// 31 ... 0 -1 ... -31
// \ / \ /
// left right
// shift shift
//
// If and only if the `F' bit is 1, RI instructions modify the
// condition bits, `Z' (Zero), `N' (Negative), `V' (oVerflow), and `C'
// (Carry), according to the result. If the flags are updated, they are
// updated as follows:
// `Z'
// is set if the result is zero and cleared otherwise.
//
// `N'
// is set to the most significant bit of the result.
//
// `V'
// For arithmetic instructions (`add', `addc', `sub', `subb') `V' is
// set if the sign (most significant) bits of the input operands are
// the same but different from the sign bit of the result and cleared
// otherwise. For other RI instructions, `V' is cleared.
//
// `C'
// For arithmetic instructions, `C' is set/cleared if there is/is_not
// a carry generated out of the most significant when performing the
// twos-complement addition (`sub(a,b) == a + ~b + 1', `subb(a,b) ==
// a + ~b + `C''). For left shifts, `C' is set to the least
// significant bit discarded by the shift operation. For all other
// operations, `C' is cleared.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
//
// The all-0s word is the instruction `R0 <- R0 + 0', which is a no-op.
class InstRI<bits<3> op, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
let Itinerary = IIC_ALU;
bits<5> Rd;
bits<5> Rs1;
bit F;
bit H;
bits<16> imm16;
let Opcode{3} = 0;
let Opcode{2 - 0} = op;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17} = F;
let Inst{16} = H;
let Inst{15 - 0} = imm16;
}
//------------------------------------------------------------------------------
// Register Register (RR)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.0.0| . . . . | . . . . |F.I| . . . . |B.B.B|J.J.J.J.J|D.D.D|
// -----------------------------------------------------------------
// opcode Rd Rs1 Rs2 \ operation /
//
// Action:
// `Rd <- Rs1 op Rs2' iff condition DDDI is true.
//
// `DDDI' is as described for the BR instruction.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `BBB' determines the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or "special"
// (111). The `JJJJJ' field is irrelevant except for special.
//
// `JJJJJ' determines which special operation is performed. `10---'
// is a logical shift, and `11---' is an arithmetic shift, and 00000` is
// the SELECT operation. The amount and direction of the shift are
// determined by the contents of `Rs2' interpreted as a two's complement
// number (in the same way as shifts in the Register-Immediate
// instructions in *Note RI::). For the SELECT operation, Rd gets Rs1 if
// condition DDDI is true, Rs2 otherwise. All other `JJJJJ' combinations
// are reserved for instructions that may be defined in the future.
//
// If the `F' bit is 1, RR instructions modify the condition bits, `Z'
// (Zero), `N' (Negative), `V' (oVerflow), and `C' (Carry), according to
// the result. All RR instructions modify the `Z', `N', and `V' flags.
// Except for arithmetic instructions (`add', `addc', `sub', `subb'), `V'
// is cleared. Only arithmetic instructions and shifts modify `C'. Right
// shifts clear C.
//
// DDDI is as described in the table for the BR instruction and only used for
// the select instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
class InstRR<bits<3> op, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
let Itinerary = IIC_ALU;
bits<5> Rd;
bits<5> Rs1;
bits<5> Rs2;
bit F;
bits<4> DDDI;
bits<5> JJJJJ;
let Opcode = 0b1100;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17} = F;
let Inst{16} = DDDI{0};
let Inst{15 - 11} = Rs2;
let Inst{10 - 8} = op;
let Inst{7 - 3} = JJJJJ;
let Inst{2 - 0} = DDDI{3 - 1};
}
//------------------------------------------------------------------------------
// Register Memory (RM)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.0.0.S| . . . . | . . . . |P.Q| . . . . . . . . . . . . . . . |
// -----------------------------------------------------------------
// opcode Rd Rs1 constant (16)
//
// Action:
// Rd <- Memory(ea) (Load) see below for the
// Memory(ea) <- Rd (Store) definition of ea.
//
// `S' determines whether the instruction is a Load (0) or a Store (1).
// Loads appear in Rd one cycle after this instruction executes. If the
// following instruction reads Rd, that instruction will be delayed by 1
// clock cycle.
//
// PQ operation
// -- ------------------------------------------
// 00 ea = Rs1
// 01 ea = Rs1, Rs1 <- Rs1 + constant
// 10 ea = Rs1 + constant
// 11 ea = Rs1 + constant, Rs1 <- Rs1 + constant
//
// The constant is sign-extended for this instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRM<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<5> Rd;
bits<5> Rs1;
bit P;
bit Q;
bits<16> imm16;
// Dummy variables to allow multiclass definition of RM and RRM
bits<2> YL;
bit E;
let Opcode{3 - 1} = 0b100;
let Opcode{0} = S;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17} = P;
let Inst{16} = Q;
let Inst{15 - 0} = imm16;
let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}
//------------------------------------------------------------------------------
// Register Register Memory (RRM)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.0.1.S| . . . . | . . . . |P.Q| . . . . |B.B.B|J.J.J.J.J|Y.L.E|
// -----------------------------------------------------------------
// opcode Rd Rs1 Rs2 \ operation /
//
// Action:
// Rd <- Memory(ea) (Load) see below for the
// Memory(ea) <- Rd (Store) definition of ea.
//
// The RRM instruction is identical to the RM (*note RM::.) instruction
// except that:
//
// 1. `Rs1 + constant' is replaced with `Rs1 op Rs2', where `op' is
// determined in the same way as in the RR instruction (*note RR::.)
// and
//
// 2. part-word memory accesses are allowed as specified below.
//
// If `BBB' != 111 (i.e.: For all but shift operations):
// If `YLE' = 01- => fuLl-word memory access
// If `YLE' = 00- => half-word memory access
// If `YLE' = 10- => bYte memory access
// If `YLE' = --1 => loads are zEro extended
// If `YLE' = --0 => loads are sign extended
//
// If `BBB' = 111 (For shift operations):
// fullword memory access are performed.
//
// All part-word loads write the least significant part of the
// destination register with the higher-order bits zero- or sign-extended.
// All part-word stores store the least significant part-word of the
// source register in the destination memory location.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRRM<bit S, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<5> Rd;
bits<5> Rs1;
bits<5> Rs2;
bit P;
bit Q;
bits<3> BBB;
bits<5> JJJJJ;
bits<2> YL;
bit E;
let Opcode{3 - 1} = 0b101;
let Opcode{0} = S;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17} = P;
let Inst{16} = Q;
let Inst{15 - 11} = Rs2;
let Inst{10 - 8} = BBB;
let Inst{7 - 3} = JJJJJ;
let Inst{2 - 1} = YL;
let Inst{0} = E;
let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}
//------------------------------------------------------------------------------
// Conditional Branch (BR)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.0|D.D.D| . . . . . . . . . . . . . . . . . . . . . . |0.I|
// -----------------------------------------------------------------
// opcode condition constant (23)
//
// Action:
// if (condition) { `pc' <- 4*(zero-extended constant) }
//
// The BR instruction is an absolute branch.
// The constant is scaled as shown by its position in the instruction word such
// that it specifies word-aligned addresses in the range [0,2^25-4]
//
// The `DDDI' field selects the condition that causes the branch to be taken.
// (the `I' (Invert sense) bit inverts the sense of the condition):
//
// DDDI logical function [code, used for...]
// ---- -------------------------------------- ------------------------
// 0000 1 [T, true]
// 0001 0 [F, false]
// 0010 C AND Z' [HI, high]
// 0011 C' OR Z [LS, low or same]
// 0100 C' [CC, carry cleared]
// 0101 C [CS, carry set]
// 0110 Z' [NE, not equal]
// 0111 Z [EQ, equal]
// 1000 V' [VC, oVerflow cleared]
// 1001 V [VS, oVerflow set]
// 1010 N' [PL, plus]
// 1011 N [MI, minus]
// 1100 (N AND V) OR (N' AND V') [GE, greater than or equal]
// 1101 (N AND V') OR (N' AND V) [LT, less than]
// 1110 (N AND V AND Z') OR (N' AND V' AND Z') [GT, greater than]
// 1111 (Z) OR (N AND V') OR (N' AND V) [LE, less than or equal]
//
// If the branch is not taken, the BR instruction is a no-op. If the branch is
// taken, the processor starts executing instructions at the branch target
// address *after* the processor has executed one more instruction. That is,
// the branch has one “branch delay slot”. Be very careful if you find yourself
// wanting to put a branch in a branch delays slot!
class InstBR<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
let Itinerary = IIC_ALU;
bits<25> addr;
bits<4> DDDI;
let Opcode = 0b1110;
let Inst{27 - 25} = DDDI{3 - 1};
let Inst{24 - 0} = addr;
// These instructions overwrite the last two address bits (which are assumed
// and ensured to be 0).
let Inst{1} = 0;
let Inst{0} = DDDI{0};
}
//------------------------------------------------------------------------------
// Conditional Branch Relative (BRR)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.0|D.D.D|1|-| . . . . |-.-| . . . . . . . . . . . . . |1.I|
// -----------------------------------------------------------------
// opcode condition Rs1 constant (14)
// Action:
// if (condition) { pc <- Rs1 + 4*sign-extended constant) }
//
// BRR behaves like BR, except the branch target address is a 16-bit PC relative
// offset.
class InstBRR<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<4> DDDI;
bits<5> Rs1;
bits<16> imm16;
let Opcode = 0b1110;
let Inst{27 - 25} = DDDI{3 - 1};
let Inst{24} = 1;
let Inst{22 - 18} = Rs1;
let Inst{17 - 16} = 0;
let Inst{15 - 0} = imm16;
// Overwrite last two bits which have to be zero
let Inst{1} = 1;
let Inst{0} = DDDI{0};
// Set don't cares to zero
let Inst{23} = 0;
}
//------------------------------------------------------------------------------
// Conditional Set (SCC)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.0|D.D.D|0.-| . . . . |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I|
// -----------------------------------------------------------------
// opcode condition Rs1
//
// Action:
// Rs1 <- logical function result
//
// SCC sets dst_reg to the boolean result of computing the logical function
// specified by DDDI, as described in the table for the BR instruction.
class InstSCC<dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
let Itinerary = IIC_ALU;
bits<5> Rs1; // dst_reg in documentation
bits<4> DDDI;
let Opcode = 0b1110;
let Inst{27 - 25} = DDDI{3 - 1};
let Inst{24} = 0;
let Inst{22 - 18} = Rs1;
let Inst{1} = 1;
let Inst{0} = DDDI{0};
// Set don't cares to zero
let Inst{23} = 0;
let Inst{17 - 2} = 0;
}
//------------------------------------------------------------------------------
// Special Load/Store (SLS)
//------------------------------------------------------------------------------
//
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.1| . . . . | . . . . |0.S| . . . . . . . . . . . . . . . |
// -----------------------------------------------------------------
// opcode Rd addr 5msb's address 16 lsb's
//
// Action:
// If S = 0 (LOAD): Rd <- Memory(address);
// If S = 1 (STORE): Memory(address) <- Rd
//
// The timing is the same as for RM (*note RM::.) and RRM (*note
// RRM::.) instructions. The two low-order bits of the 21-bit address are
// ignored. The address is zero extended. Fullword memory accesses are
// performed.
class InstSLS<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<5> Rd;
bits<5> msb;
bits<16> lsb;
let Opcode = 0b1111;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = msb;
let Inst{17} = 0;
let Inst{16} = S;
let Inst{15 - 0} = lsb;
}
//------------------------------------------------------------------------------
// Special Load Immediate (SLI)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.1| . . . . | . . . . |1.0| . . . . . . . . . . . . . . . |
// -----------------------------------------------------------------
// opcode Rd const 5msb's constant 16 lsb's
//
// Action:
// Rd <- constant
//
// The 21-bit constant is zero-extended. The timing is the same as the
// RM instruction (*note RM::.).
class InstSLI<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<5> Rd;
bits<5> msb;
bits<16> lsb;
let Opcode = 0b1111;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = msb;
let Inst{17} = 1;
let Inst{16} = 0;
let Inst{15 - 0} = lsb;
}
//------------------------------------------------------------------------------
// Special Part-Word Load/Store (SPLS)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.1.1| . . . . | . . . . |1.1.0.Y.S.E.P.Q| . . . . . . . . . |
// -----------------------------------------------------------------
// opcode Rd Rs1 constant (10)
//
// Action:
// If `YS' = 11 (bYte Store):
// Memory(ea) <- (least significant byte of Rr)
// If `YS' = 01 (halfword Store):
// Memory(ea) <- (least significant half-word of Rr)
// If `YS' = 10 (bYte load): Rr <- Memory(ea)
// If `YS' = 00 (halfword load): Rr <- Memory(ea)
// [Note: here ea is determined as in the RM instruction. ]
// If `SE' = 01 then the value is zEro extended
// before being loaded into Rd.
// If `SE' = 00 then the value is sign extended
// before being loaded into Rd.
//
// `P' and `Q' are used to determine `ea' as in the RM instruction. The
// constant is sign extended. The timing is the same as the RM and RRM
// instructions. *Note RM:: and *Note RRM::.
//
// All part-word loads write the part-word into the least significant
// part of the destination register, with the higher-order bits zero- or
// sign-extended. All part-word stores store the least significant
// part-word of the source register into the destination memory location.
class InstSPLS<dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
bits<5> Rd;
bits<5> Rs1;
bits<5> msb;
bit Y;
bit S;
bit E;
bit P;
bit Q;
bits<10> imm10;
let Opcode = 0b1111;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17 - 15} = 0b110;
let Inst{14} = Y;
let Inst{13} = S;
let Inst{12} = E;
let Inst{11} = P;
let Inst{10} = Q;
let Inst{9 - 0} = imm10;
let PostEncoderMethod = "adjustPqBitsSpls";
}
//------------------------------------------------------------------------------
// Special instructions (popc, leadz, trailz)
//------------------------------------------------------------------------------
// Encoding:
// -----------------------------------------------------------------
// |1.1.0.1| Rd | Rs1 |F.-| . . . . | . . | . . . . | OP |
// -----------------------------------------------------------------
// opcode Rd Rs1
// Action:
// Rd <- Perform action encoded in OP on Rs1
// OP is one of:
// 0b001 POPC Population count;
// 0b010 LEADZ Count number of leading zeros;
// 0b011 TRAILZ Count number of trailing zeros;
class InstSpecial<bits<3> op, dag outs, dag ins, string asmstr,
list<dag> pattern> : InstLanai<outs, ins, asmstr,
pattern>, Sched<[WriteALU]> {
let Itinerary = IIC_ALU;
bit F;
bits<5> Rd;
bits<5> Rs1;
let Opcode = 0b1101;
let Inst{27 - 23} = Rd;
let Inst{22 - 18} = Rs1;
let Inst{17} = F;
let Inst{16 - 3} = 0;
let Inst{2 - 0} = op;
}
// Pseudo instructions
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstLanai<outs, ins, asmstr, pattern> {
let Inst{15 - 0} = 0;
let isPseudo = 1;
}