mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
b728e61465
Part of the fix for https://bugs.llvm.org/show_bug.cgi?id=35812. This patch ensures that the compare operand for the atomic compare and swap is properly zero-extended to 32 bits if applicable. A follow-up commit will fix the extension for the SETCC node generated when expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS. That will complete the bug fix. Differential Revision: https://reviews.llvm.org/D41856 llvm-svn: 322372
1138 lines
50 KiB
C++
1138 lines
50 KiB
C++
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that PPC uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
namespace PPCISD {
|
|
|
|
// When adding a NEW PPCISD node please add it to the correct position in
|
|
// the enum. The order of elements in this enum matters!
|
|
// Values that are added after this entry:
|
|
// STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
|
|
// are considerd memory opcodes and are treated differently than entries
|
|
// that come before it. For example, ADD or MUL should be placed before
|
|
// the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
|
|
// after it.
|
|
enum NodeType : unsigned {
|
|
// Start the numbering where the builtin ops and target ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// FSEL - Traditional three-operand fsel node.
|
|
///
|
|
FSEL,
|
|
|
|
/// FCFID - The FCFID instruction, taking an f64 operand and producing
|
|
/// and f64 value containing the FP representation of the integer that
|
|
/// was temporarily in the f64 operand.
|
|
FCFID,
|
|
|
|
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
|
|
/// unsigned integers and single-precision outputs.
|
|
FCFIDU, FCFIDS, FCFIDUS,
|
|
|
|
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
|
|
/// operand, producing an f64 value containing the integer representation
|
|
/// of that FP value.
|
|
FCTIDZ, FCTIWZ,
|
|
|
|
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
|
|
/// unsigned integers with round toward zero.
|
|
FCTIDUZ, FCTIWUZ,
|
|
|
|
/// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
|
|
/// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
|
|
VEXTS,
|
|
|
|
/// SExtVElems, takes an input vector of a smaller type and sign
|
|
/// extends to an output vector of a larger type.
|
|
SExtVElems,
|
|
|
|
/// Reciprocal estimate instructions (unary FP ops).
|
|
FRE, FRSQRTE,
|
|
|
|
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
|
|
// three v4f32 operands and producing a v4f32 result.
|
|
VMADDFP, VNMSUBFP,
|
|
|
|
/// VPERM - The PPC VPERM Instruction.
|
|
///
|
|
VPERM,
|
|
|
|
/// XXSPLT - The PPC VSX splat instructions
|
|
///
|
|
XXSPLT,
|
|
|
|
/// VECINSERT - The PPC vector insert instruction
|
|
///
|
|
VECINSERT,
|
|
|
|
/// XXREVERSE - The PPC VSX reverse instruction
|
|
///
|
|
XXREVERSE,
|
|
|
|
/// VECSHL - The PPC vector shift left instruction
|
|
///
|
|
VECSHL,
|
|
|
|
/// XXPERMDI - The PPC XXPERMDI instruction
|
|
///
|
|
XXPERMDI,
|
|
|
|
/// The CMPB instruction (takes two operands of i32 or i64).
|
|
CMPB,
|
|
|
|
/// Hi/Lo - These represent the high and low 16-bit parts of a global
|
|
/// address respectively. These nodes have two operands, the first of
|
|
/// which must be a TargetGlobalAddress, and the second of which must be a
|
|
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
|
|
/// though these are usually folded into other nodes.
|
|
Hi, Lo,
|
|
|
|
/// The following two target-specific nodes are used for calls through
|
|
/// function pointers in the 64-bit SVR4 ABI.
|
|
|
|
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an allocation on the stack.
|
|
DYNALLOC,
|
|
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an offset from native SP to the address of the most recent
|
|
/// dynamic alloca.
|
|
DYNAREAOFFSET,
|
|
|
|
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// These nodes represent PPC shifts.
|
|
///
|
|
/// For scalar types, only the last `n + 1` bits of the shift amounts
|
|
/// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
|
|
/// for exact behaviors.
|
|
///
|
|
/// For vector types, only the last n bits are used. See vsld.
|
|
SRL, SRA, SHL,
|
|
|
|
/// The combination of sra[wd]i and addze used to implemented signed
|
|
/// integer division by a power of 2. The first operand is the dividend,
|
|
/// and the second is the constant shift amount (representing the
|
|
/// divisor).
|
|
SRA_ADDZE,
|
|
|
|
/// CALL - A direct function call.
|
|
/// CALL_NOP is a call with the special NOP which follows 64-bit
|
|
/// SVR4 calls.
|
|
CALL, CALL_NOP,
|
|
|
|
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
|
|
/// MTCTR instruction.
|
|
MTCTR,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
|
|
/// BCTRL instruction.
|
|
BCTRL,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
|
|
/// instruction and the TOC reload required on SVR4 PPC64.
|
|
BCTRL_LOAD_TOC,
|
|
|
|
/// Return with a flag operand, matched by 'blr'
|
|
RET_FLAG,
|
|
|
|
/// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
|
|
/// This copies the bits corresponding to the specified CRREG into the
|
|
/// resultant GPR. Bits corresponding to other CR regs are undefined.
|
|
MFOCRF,
|
|
|
|
/// Direct move from a VSX register to a GPR
|
|
MFVSR,
|
|
|
|
/// Direct move from a GPR to a VSX register (algebraic)
|
|
MTVSRA,
|
|
|
|
/// Direct move from a GPR to a VSX register (zero)
|
|
MTVSRZ,
|
|
|
|
/// Extract a subvector from signed integer vector and convert to FP.
|
|
/// It is primarily used to convert a (widened) illegal integer vector
|
|
/// type to a legal floating point vector type.
|
|
/// For example v2i32 -> widened to v4i32 -> v2f64
|
|
SINT_VEC_TO_FP,
|
|
|
|
/// Extract a subvector from unsigned integer vector and convert to FP.
|
|
/// As with SINT_VEC_TO_FP, used for converting illegal types.
|
|
UINT_VEC_TO_FP,
|
|
|
|
// FIXME: Remove these once the ANDI glue bug is fixed:
|
|
/// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
|
|
/// eq or gt bit of CR0 after executing andi. x, 1. This is used to
|
|
/// implement truncation of i32 or i64 to i1.
|
|
ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
|
|
|
|
// READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
|
|
// target (returns (Lo, Hi)). It takes a chain operand.
|
|
READ_TIME_BASE,
|
|
|
|
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
|
|
/// instructions. For lack of better number, we use the opcode number
|
|
/// encoding for the OPC field to identify the compare. For example, 838
|
|
/// is VCMPGTSH.
|
|
VCMP,
|
|
|
|
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
|
|
/// altivec VCMP*o instructions. For lack of better number, we use the
|
|
/// opcode number encoding for the OPC field to identify the compare. For
|
|
/// example, 838 is VCMPGTSH.
|
|
VCMPo,
|
|
|
|
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
|
|
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
|
|
/// condition register to branch on, OPC is the branch opcode to use (e.g.
|
|
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
|
|
/// an optional input flag argument.
|
|
COND_BRANCH,
|
|
|
|
/// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
|
|
/// loops.
|
|
BDNZ, BDZ,
|
|
|
|
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
|
|
/// towards zero. Used only as part of the long double-to-int
|
|
/// conversion sequence.
|
|
FADDRTZ,
|
|
|
|
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
|
|
MFFS,
|
|
|
|
/// TC_RETURN - A tail call return.
|
|
/// operand #0 chain
|
|
/// operand #1 callee (register or absolute)
|
|
/// operand #2 stack adjustment
|
|
/// operand #3 optional in flag
|
|
TC_RETURN,
|
|
|
|
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
|
|
CR6SET,
|
|
CR6UNSET,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
|
|
/// on PPC32.
|
|
PPC32_GOT,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
|
|
/// local dynamic TLS on PPC32.
|
|
PPC32_PICGOT,
|
|
|
|
/// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
|
|
/// TLS model, produces an ADDIS8 instruction that adds the GOT
|
|
/// base to sym\@got\@tprel\@ha.
|
|
ADDIS_GOT_TPREL_HA,
|
|
|
|
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
|
|
/// TLS model, produces a LD instruction with base register G8RReg
|
|
/// and offset sym\@got\@tprel\@l. This completes the addition that
|
|
/// finds the offset of "sym" relative to the thread pointer.
|
|
LD_GOT_TPREL_L,
|
|
|
|
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
|
|
/// model, produces an ADD instruction that adds the contents of
|
|
/// G8RReg to the thread pointer. Symbol contains a relocation
|
|
/// sym\@tls which is to be replaced by the thread pointer and
|
|
/// identifies to the linker that the instruction is part of a
|
|
/// TLS sequence.
|
|
ADD_TLS,
|
|
|
|
/// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsgd\@ha.
|
|
ADDIS_TLSGD_HA,
|
|
|
|
/// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
ADDI_TLSGD_L,
|
|
|
|
/// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
GET_TLS_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
|
|
/// register assignment.
|
|
ADDI_TLSGD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsld\@ha.
|
|
ADDIS_TLSLD_HA,
|
|
|
|
/// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
ADDI_TLSLD_L,
|
|
|
|
/// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
GET_TLSLD_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
|
|
/// following register assignment.
|
|
ADDI_TLSLD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds X3 to
|
|
/// sym\@dtprel\@ha.
|
|
ADDIS_DTPREL_HA,
|
|
|
|
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@dtprel\@l.
|
|
ADDI_DTPREL_L,
|
|
|
|
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
|
|
/// during instruction selection to optimize a BUILD_VECTOR into
|
|
/// operations on splats. This is necessary to avoid losing these
|
|
/// optimizations due to constant folding.
|
|
VADD_SPLAT,
|
|
|
|
/// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
|
|
/// operand identifies the operating system entry point.
|
|
SC,
|
|
|
|
/// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
|
|
CLRBHRB,
|
|
|
|
/// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
|
|
/// history rolling buffer entry.
|
|
MFBHRBE,
|
|
|
|
/// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
|
|
RFEBB,
|
|
|
|
/// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
|
|
/// endian. Maps to an xxswapd instruction that corrects an lxvd2x
|
|
/// or stxvd2x instruction. The chain is necessary because the
|
|
/// sequence replaces a load and needs to provide the same number
|
|
/// of outputs.
|
|
XXSWAPD,
|
|
|
|
/// An SDNode for swaps that are not associated with any loads/stores
|
|
/// and thereby have no chain.
|
|
SWAP_NO_CHAIN,
|
|
|
|
/// QVFPERM = This corresponds to the QPX qvfperm instruction.
|
|
QVFPERM,
|
|
|
|
/// QVGPCI = This corresponds to the QPX qvgpci instruction.
|
|
QVGPCI,
|
|
|
|
/// QVALIGNI = This corresponds to the QPX qvaligni instruction.
|
|
QVALIGNI,
|
|
|
|
/// QVESPLATI = This corresponds to the QPX qvesplati instruction.
|
|
QVESPLATI,
|
|
|
|
/// QBFLT = Access the underlying QPX floating-point boolean
|
|
/// representation.
|
|
QBFLT,
|
|
|
|
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
|
|
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
|
|
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
|
|
/// i32.
|
|
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
|
|
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
|
|
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
|
|
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
|
|
/// or i32.
|
|
LBRX,
|
|
|
|
/// STFIWX - The STFIWX instruction. The first operand is an input token
|
|
/// chain, then an f64 value to store, then an address to store it to.
|
|
STFIWX,
|
|
|
|
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
|
|
/// load which sign-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWAX,
|
|
|
|
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
|
|
/// load which zero-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWZX,
|
|
|
|
/// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
|
|
/// integer smaller than 64 bits into a VSR. The integer is zero-extended.
|
|
/// This can be used for converting loaded integers to floating point.
|
|
LXSIZX,
|
|
|
|
/// STXSIX - The STXSI[bh]X instruction. The first operand is an input
|
|
/// chain, then an f64 value to store, then an address to store it to,
|
|
/// followed by a byte-width for the store.
|
|
STXSIX,
|
|
|
|
/// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an lxvd2x instruction that will be followed by
|
|
/// an xxswapd.
|
|
LXVD2X,
|
|
|
|
/// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an stxvd2x instruction that will be preceded by
|
|
/// an xxswapd.
|
|
STXVD2X,
|
|
|
|
/// QBRC, CHAIN = QVLFSb CHAIN, Ptr
|
|
/// The 4xf32 load used for v4i1 constants.
|
|
QVLFSb,
|
|
|
|
/// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
|
|
/// except they ensure that the compare input is zero-extended for
|
|
/// sub-word versions because the atomic loads zero-extend.
|
|
ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
|
|
|
|
/// GPRC = TOC_ENTRY GA, TOC
|
|
/// Loads the entry for GA from the TOC, where the TOC base is given by
|
|
/// the last operand.
|
|
TOC_ENTRY
|
|
};
|
|
|
|
} // end namespace PPCISD
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace PPC {
|
|
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUDUM instruction.
|
|
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VMRGEW or VMRGOW instruction
|
|
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
/// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXSLDWI instruction.
|
|
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
|
|
bool &Swap, bool IsLE);
|
|
|
|
/// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXBRH instruction.
|
|
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXBRW instruction.
|
|
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXBRD instruction.
|
|
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXBRQ instruction.
|
|
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
|
|
/// for a XXPERMDI instruction.
|
|
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
|
|
bool &Swap, bool IsLE);
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
|
|
/// shift amount, otherwise return -1.
|
|
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
|
|
|
|
/// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
|
|
/// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
|
|
/// shuffle of v4f32/v4i32 vectors that just inserts one element from one
|
|
/// vector into the other. This function will also set a couple of
|
|
/// output parameters for how much the source vector needs to be shifted and
|
|
/// what byte number needs to be specified for the instruction to put the
|
|
/// element in the desired location of the target vector.
|
|
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
|
|
unsigned &InsertAtByte, bool &Swap, bool IsLE);
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
|
|
/// formed by using a vspltis[bhw] instruction of the specified element
|
|
/// size, return the constant being splatted. The ByteSize field indicates
|
|
/// the number of bytes of each element [124] -> [bhw].
|
|
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
|
|
|
|
/// If this is a qvaligni shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int isQVALIGNIShuffleMask(SDNode *N);
|
|
|
|
} // end namespace PPC
|
|
|
|
class PPCTargetLowering : public TargetLowering {
|
|
const PPCSubtarget &Subtarget;
|
|
|
|
public:
|
|
explicit PPCTargetLowering(const PPCTargetMachine &TM,
|
|
const PPCSubtarget &STI);
|
|
|
|
/// getTargetNodeName() - This method returns the name of a target specific
|
|
/// DAG node.
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
|
|
/// getPreferredVectorAction - The code we generate when vector types are
|
|
/// legalized by promoting the integer element type is often much worse
|
|
/// than code we generate if we widen the type for applicable vector types.
|
|
/// The issue with promoting is that the vector is scalaraized, individual
|
|
/// elements promoted and then the vector is rebuilt. So say we load a pair
|
|
/// of v4i8's and shuffle them. This will turn into a mess of 8 extending
|
|
/// loads, moves back into VSR's (or memory ops if we don't have moves) and
|
|
/// then the VPERM for the shuffle. All in all a very slow sequence.
|
|
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
|
|
const override {
|
|
if (VT.getScalarSizeInBits() % 8 == 0)
|
|
return TypeWidenVector;
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
bool useSoftFloat() const override;
|
|
|
|
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool isCheapToSpeculateCttz() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isCheapToSpeculateCtlz() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isCtlzFast() const override {
|
|
return true;
|
|
}
|
|
|
|
bool hasAndNotCompare(SDValue) const override {
|
|
return true;
|
|
}
|
|
|
|
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
|
|
return VT.isScalarInteger();
|
|
}
|
|
|
|
bool supportSplitCSR(MachineFunction *MF) const override {
|
|
return
|
|
MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
|
|
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
|
|
}
|
|
|
|
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
|
|
|
|
void insertCopiesSplitCSR(
|
|
MachineBasicBlock *Entry,
|
|
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
|
|
|
|
/// getSetCCResultType - Return the ISD::SETCC ValueType
|
|
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
|
|
EVT VT) const override;
|
|
|
|
/// Return true if target always beneficiates from combining into FMA for a
|
|
/// given value type. This must typically return false on targets where FMA
|
|
/// takes more cycles to execute than FADD.
|
|
bool enableAggressiveFMAFusion(EVT VT) const override;
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegImm - Returns true if the address N can be represented
|
|
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
|
|
/// is not better represented as reg+reg. If Aligned is true, only accept
|
|
/// displacements suitable for STD and friends, i.e. multiples of 4.
|
|
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
|
|
SelectionDAG &DAG, unsigned Alignment) const;
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
Sched::Preference getSchedulingPreference(SDNode *N) const override;
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
|
|
std::vector<SDNode *> *Created) const override;
|
|
|
|
unsigned getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
|
|
|
|
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
|
|
return true;
|
|
}
|
|
|
|
Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
|
|
AtomicOrdering Ord) const override;
|
|
Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
|
|
AtomicOrdering Ord) const override;
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const override;
|
|
MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned AtomicSize,
|
|
unsigned BinOpcode,
|
|
unsigned CmpOpcode = 0,
|
|
unsigned CmpPred = 0) const;
|
|
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
bool is8bit,
|
|
unsigned Opcode,
|
|
unsigned CmpOpcode = 0,
|
|
unsigned CmpPred = 0) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
ConstraintType getConstraintType(StringRef Constraint) const override;
|
|
|
|
/// Examine constraint string and operand type and determine a weight value.
|
|
/// The operand object must already have been set up with the operand type.
|
|
ConstraintWeight getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const override;
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint, MVT VT) const override;
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
unsigned getByValTypeAlignment(Type *Ty,
|
|
const DataLayout &DL) const override;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned
|
|
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
|
|
if (ConstraintCode == "es")
|
|
return InlineAsm::Constraint_es;
|
|
else if (ConstraintCode == "o")
|
|
return InlineAsm::Constraint_o;
|
|
else if (ConstraintCode == "Q")
|
|
return InlineAsm::Constraint_Q;
|
|
else if (ConstraintCode == "Z")
|
|
return InlineAsm::Constraint_Z;
|
|
else if (ConstraintCode == "Zy")
|
|
return InlineAsm::Constraint_Zy;
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
|
|
Type *Ty, unsigned AS,
|
|
Instruction *I = nullptr) const override;
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can
|
|
/// compare a register against the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
|
|
/// isLegalAddImmediate - Return true if the specified immediate is legal
|
|
/// add immediate, that is the target has add instructions which can
|
|
/// add a register and the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
|
|
/// isTruncateFree - Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
|
|
/// register X1 to i32 by referencing its sub-register R1.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTruncateFree(EVT VT1, EVT VT2) const override;
|
|
|
|
bool isZExtFree(SDValue Val, EVT VT2) const override;
|
|
|
|
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const override;
|
|
|
|
bool convertSelectOfConstantsToMath(EVT VT) const override {
|
|
return true;
|
|
}
|
|
|
|
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const override;
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT
|
|
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
|
MachineFunction &MF) const override;
|
|
|
|
/// Is unaligned memory access allowed for the given type, and is it fast
|
|
/// relative to software emulation.
|
|
bool allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align = 1,
|
|
bool *Fast = nullptr) const override;
|
|
|
|
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
|
|
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
|
|
/// expanded to FMAs when this method returns true, otherwise fmuladd is
|
|
/// expanded to fmul + fadd.
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
|
|
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
|
|
|
|
// Should we expand the build vector with shuffles?
|
|
bool
|
|
shouldExpandBuildVectorWithShuffles(EVT VT,
|
|
unsigned DefinedValues) const override;
|
|
|
|
/// createFastISel - This method returns a target-specific FastISel object,
|
|
/// or null if the target does not support "fast" instruction selection.
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo) const override;
|
|
|
|
/// \brief Returns true if an argument of type Ty needs to be passed in a
|
|
/// contiguous block of registers in calling convention CallConv.
|
|
bool functionArgumentNeedsConsecutiveRegisters(
|
|
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
|
|
// We support any array type as "consecutive" block in the parameter
|
|
// save area. The element type defines the alignment requirement and
|
|
// whether the argument should go in GPRs, FPRs, or VRs if available.
|
|
//
|
|
// Note that clang uses this capability both to implement the ELFv2
|
|
// homogeneous float/vector aggregate ABI, and to avoid having to use
|
|
// "byval" when passing aggregates that might fully fit in registers.
|
|
return Ty->isArrayTy();
|
|
}
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception address on entry to an EH pad.
|
|
unsigned
|
|
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception typeid on entry to a landing pad.
|
|
unsigned
|
|
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
|
|
|
|
/// Override to support customized stack guard loading.
|
|
bool useLoadStackGuardNode() const override;
|
|
void insertSSPDeclarations(Module &M) const override;
|
|
|
|
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
|
|
|
|
unsigned getJumpTableEncoding() const override;
|
|
bool isJumpTableRelative() const override;
|
|
SDValue getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const override;
|
|
const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI,
|
|
MCContext &Ctx) const override;
|
|
|
|
private:
|
|
struct ReuseLoadInfo {
|
|
SDValue Ptr;
|
|
SDValue Chain;
|
|
SDValue ResChain;
|
|
MachinePointerInfo MPI;
|
|
bool IsDereferenceable = false;
|
|
bool IsInvariant = false;
|
|
unsigned Alignment = 0;
|
|
AAMDNodes AAInfo;
|
|
const MDNode *Ranges = nullptr;
|
|
|
|
ReuseLoadInfo() = default;
|
|
|
|
MachineMemOperand::Flags MMOFlags() const {
|
|
MachineMemOperand::Flags F = MachineMemOperand::MONone;
|
|
if (IsDereferenceable)
|
|
F |= MachineMemOperand::MODereferenceable;
|
|
if (IsInvariant)
|
|
F |= MachineMemOperand::MOInvariant;
|
|
return F;
|
|
}
|
|
};
|
|
|
|
bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG,
|
|
ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
|
|
void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
|
|
SelectionDAG &DAG) const;
|
|
|
|
void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG, const SDLoc &dl) const;
|
|
SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
|
|
bool directMoveIsProfitable(const SDValue &Op) const;
|
|
SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
|
|
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
|
|
|
|
bool
|
|
IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
bool
|
|
IsEligibleForTailCallOptimization_64SVR4(
|
|
SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
ImmutableCallSite CS,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
|
|
SDValue Chain, SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
|
|
bool isTailCall, bool isVarArg, bool isPatchPoint,
|
|
bool hasNest, SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
|
|
SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
|
|
SDValue &Callee, int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite CS) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
|
|
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const override;
|
|
|
|
SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
|
|
SelectionDAG &DAG, SDValue ArgVal,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerFormalArguments_Darwin(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue LowerFormalArguments_64SVR4(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue LowerFormalArguments_32SVR4(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
|
|
SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
|
|
SDValue CallSeqStart,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite CS) const;
|
|
SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite CS) const;
|
|
SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite CS) const;
|
|
|
|
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
/// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
|
|
/// SETCC with integer subtraction when (1) there is a legal way of doing it
|
|
/// (2) keeping the result of comparison in GPR has performance benefit.
|
|
SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps, bool &UseOneConstNR,
|
|
bool Reciprocal) const override;
|
|
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps) const override;
|
|
unsigned combineRepeatedFPDivisors() const override;
|
|
|
|
CCAssignFn *useFastISelCCs(unsigned Flag) const;
|
|
|
|
SDValue
|
|
combineElementTruncationToVectorTruncation(SDNode *N,
|
|
DAGCombinerInfo &DCI) const;
|
|
|
|
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
|
|
/// handled by the VINSERTH instruction introduced in ISA 3.0. This is
|
|
/// essentially any shuffle of v8i16 vectors that just inserts one element
|
|
/// from one vector into the other.
|
|
SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
|
|
|
|
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
|
|
/// handled by the VINSERTB instruction introduced in ISA 3.0. This is
|
|
/// essentially v16i8 vector version of VINSERTH.
|
|
SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
|
|
|
|
// Return whether the call instruction can potentially be optimized to a
|
|
// tail call. This will cause the optimizers to attempt to move, or
|
|
// duplicate return instructions to help enable tail call optimizations.
|
|
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
|
|
}; // end class PPCTargetLowering
|
|
|
|
namespace PPC {
|
|
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo);
|
|
|
|
} // end namespace PPC
|
|
|
|
bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool
|
|
CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool isIntS16Immediate(SDNode *N, int16_t &Imm);
|
|
bool isIntS16Immediate(SDValue Op, int16_t &Imm);
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|