mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
df40ece177
Re-land r321234. It had to be reverted because it broke the shared library build. The shared library build broke because there was a missing LLVMBuild dependency from lib/Passes (which calls TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can tell, this problem was always there but was somehow masked before (perhaps because TargetMachine::getTargetIRAnalysis was a virtual function). Original commit message: This makes the TargetMachine interface a bit simpler. We still need the std::function in TargetIRAnalysis to avoid having to add a dependency from Analysis to Target. See discussion: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html I avoided adding all of the backend owners to this review since the change is simple, but let me know if you feel differently about this. Reviewers: echristo, MatzeB, hfinkel Reviewed By: hfinkel Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits Differential Revision: https://reviews.llvm.org/D41464 llvm-svn: 321375
264 lines
9.3 KiB
C++
264 lines
9.3 KiB
C++
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZTargetMachine.h"
|
|
#include "MCTargetDesc/SystemZMCTargetDesc.h"
|
|
#include "SystemZ.h"
|
|
#include "SystemZMachineScheduler.h"
|
|
#include "SystemZTargetTransformInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFile.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
extern "C" void LLVMInitializeSystemZTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
|
|
}
|
|
|
|
// Determine whether we use the vector ABI.
|
|
static bool UsesVectorABI(StringRef CPU, StringRef FS) {
|
|
// We use the vector ABI whenever the vector facility is avaiable.
|
|
// This is the case by default if CPU is z13 or later, and can be
|
|
// overridden via "[+-]vector" feature string elements.
|
|
bool VectorABI = true;
|
|
if (CPU.empty() || CPU == "generic" ||
|
|
CPU == "z10" || CPU == "z196" || CPU == "zEC12")
|
|
VectorABI = false;
|
|
|
|
SmallVector<StringRef, 3> Features;
|
|
FS.split(Features, ',', -1, false /* KeepEmpty */);
|
|
for (auto &Feature : Features) {
|
|
if (Feature == "vector" || Feature == "+vector")
|
|
VectorABI = true;
|
|
if (Feature == "-vector")
|
|
VectorABI = false;
|
|
}
|
|
|
|
return VectorABI;
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
|
|
StringRef FS) {
|
|
bool VectorABI = UsesVectorABI(CPU, FS);
|
|
std::string Ret;
|
|
|
|
// Big endian.
|
|
Ret += "E";
|
|
|
|
// Data mangling.
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
|
|
// Make sure that global data has at least 16 bits of alignment by
|
|
// default, so that we can refer to it using LARL. We don't have any
|
|
// special requirements for stack variables though.
|
|
Ret += "-i1:8:16-i8:8:16";
|
|
|
|
// 64-bit integers are naturally aligned.
|
|
Ret += "-i64:64";
|
|
|
|
// 128-bit floats are aligned only to 64 bits.
|
|
Ret += "-f128:64";
|
|
|
|
// When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
|
|
if (VectorABI)
|
|
Ret += "-v128:64";
|
|
|
|
// We prefer 16 bits of aligned for all globals; see above.
|
|
Ret += "-a:8:16";
|
|
|
|
// Integer registers are 32 or 64 bits.
|
|
Ret += "-n32:64";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
|
|
// Static code is suitable for use in a dynamic executable; there is no
|
|
// separate DynamicNoPIC model.
|
|
if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
|
|
return Reloc::Static;
|
|
return *RM;
|
|
}
|
|
|
|
// For SystemZ we define the models as follows:
|
|
//
|
|
// Small: BRASL can call any function and will use a stub if necessary.
|
|
// Locally-binding symbols will always be in range of LARL.
|
|
//
|
|
// Medium: BRASL can call any function and will use a stub if necessary.
|
|
// GOT slots and locally-defined text will always be in range
|
|
// of LARL, but other symbols might not be.
|
|
//
|
|
// Large: Equivalent to Medium for now.
|
|
//
|
|
// Kernel: Equivalent to Medium for now.
|
|
//
|
|
// This means that any PIC module smaller than 4GB meets the
|
|
// requirements of Small, so Small seems like the best default there.
|
|
//
|
|
// All symbols bind locally in a non-PIC module, so the choice is less
|
|
// obvious. There are two cases:
|
|
//
|
|
// - When creating an executable, PLTs and copy relocations allow
|
|
// us to treat external symbols as part of the executable.
|
|
// Any executable smaller than 4GB meets the requirements of Small,
|
|
// so that seems like the best default.
|
|
//
|
|
// - When creating JIT code, stubs will be in range of BRASL if the
|
|
// image is less than 4GB in size. GOT entries will likewise be
|
|
// in range of LARL. However, the JIT environment has no equivalent
|
|
// of copy relocs, so locally-binding data symbols might not be in
|
|
// the range of LARL. We need the Medium model in that case.
|
|
static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
|
|
Reloc::Model RM, bool JIT) {
|
|
if (CM)
|
|
return *CM;
|
|
if (JIT)
|
|
return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
|
|
return CodeModel::Small;
|
|
}
|
|
|
|
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: LLVMTargetMachine(
|
|
T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
|
|
getEffectiveRelocModel(RM),
|
|
getEffectiveCodeModel(CM, getEffectiveRelocModel(RM), JIT), OL),
|
|
TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
|
|
Subtarget(TT, CPU, FS, *this) {
|
|
initAsmInfo();
|
|
}
|
|
|
|
SystemZTargetMachine::~SystemZTargetMachine() = default;
|
|
|
|
namespace {
|
|
|
|
/// SystemZ Code Generator Pass Configuration Options.
|
|
class SystemZPassConfig : public TargetPassConfig {
|
|
public:
|
|
SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
SystemZTargetMachine &getSystemZTargetMachine() const {
|
|
return getTM<SystemZTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createPostMachineScheduler(MachineSchedContext *C) const override {
|
|
return new ScheduleDAGMI(C,
|
|
llvm::make_unique<SystemZPostRASchedStrategy>(C),
|
|
/*RemoveKillFlags=*/true);
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addILPOpts() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void SystemZPassConfig::addIRPasses() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createSystemZTDCPass());
|
|
addPass(createLoopDataPrefetchPass());
|
|
}
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
}
|
|
|
|
bool SystemZPassConfig::addInstSelector() {
|
|
addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
|
|
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZPassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterID);
|
|
return true;
|
|
}
|
|
|
|
void SystemZPassConfig::addPreSched2() {
|
|
addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
|
|
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(&IfConverterID);
|
|
}
|
|
|
|
void SystemZPassConfig::addPreEmitPass() {
|
|
// Do instruction shortening before compare elimination because some
|
|
// vector instructions will be shortened into opcodes that compare
|
|
// elimination recognizes.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
|
|
|
|
// We eliminate comparisons here rather than earlier because some
|
|
// transformations can change the set of available CC values and we
|
|
// generally want those transformations to have priority. This is
|
|
// especially true in the commonest case where the result of the comparison
|
|
// is used by a single in-range branch instruction, since we will then
|
|
// be able to fuse the compare and the branch instead.
|
|
//
|
|
// For example, two-address NILF can sometimes be converted into
|
|
// three-address RISBLG. NILF produces a CC value that indicates whether
|
|
// the low word is zero, but RISBLG does not modify CC at all. On the
|
|
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
|
|
// The CC value produced by NILL isn't useful for our purposes, but the
|
|
// value produced by RISBG can be used for any comparison with zero
|
|
// (not just equality). So there are some transformations that lose
|
|
// CC values (while still being worthwhile) and others that happen to make
|
|
// the CC result more useful than it was originally.
|
|
//
|
|
// Another reason is that we only want to use BRANCH ON COUNT in cases
|
|
// where we know that the count register is not going to be spilled.
|
|
//
|
|
// Doing it so late makes it more likely that a register will be reused
|
|
// between the comparison and the branch, but it isn't clear whether
|
|
// preventing that would be a win or not.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
|
|
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
|
|
|
|
// Do final scheduling after all other optimizations, to get an
|
|
// optimal input for the decoder (branch relaxation must happen
|
|
// after block placement).
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(&PostMachineSchedulerID);
|
|
}
|
|
|
|
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new SystemZPassConfig(*this, PM);
|
|
}
|
|
|
|
TargetTransformInfo
|
|
SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(SystemZTTIImpl(this, F));
|
|
}
|