mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
df7a8b162e
This makes it possible for targets to define their own MCObjectFileInfo. This MCObjectFileInfo is then used to determine things like section alignment. This is a follow up to D101462 and prepares for the RISCV backend defining the text section alignment depending on the enabled extensions. Reviewed By: MaskRay Differential Revision: https://reviews.llvm.org/D101921
606 lines
20 KiB
C++
606 lines
20 KiB
C++
//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Analysis.h"
|
|
#include "BenchmarkResult.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include <limits>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
namespace exegesis {
|
|
|
|
static const char kCsvSep = ',';
|
|
|
|
namespace {
|
|
|
|
enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
|
|
|
|
template <EscapeTag Tag> void writeEscaped(raw_ostream &OS, const StringRef S);
|
|
|
|
template <> void writeEscaped<kEscapeCsv>(raw_ostream &OS, const StringRef S) {
|
|
if (!llvm::is_contained(S, kCsvSep)) {
|
|
OS << S;
|
|
} else {
|
|
// Needs escaping.
|
|
OS << '"';
|
|
for (const char C : S) {
|
|
if (C == '"')
|
|
OS << "\"\"";
|
|
else
|
|
OS << C;
|
|
}
|
|
OS << '"';
|
|
}
|
|
}
|
|
|
|
template <> void writeEscaped<kEscapeHtml>(raw_ostream &OS, const StringRef S) {
|
|
for (const char C : S) {
|
|
if (C == '<')
|
|
OS << "<";
|
|
else if (C == '>')
|
|
OS << ">";
|
|
else if (C == '&')
|
|
OS << "&";
|
|
else
|
|
OS << C;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void writeEscaped<kEscapeHtmlString>(raw_ostream &OS, const StringRef S) {
|
|
for (const char C : S) {
|
|
if (C == '"')
|
|
OS << "\\\"";
|
|
else
|
|
OS << C;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <EscapeTag Tag>
|
|
static void
|
|
writeClusterId(raw_ostream &OS,
|
|
const InstructionBenchmarkClustering::ClusterId &CID) {
|
|
if (CID.isNoise())
|
|
writeEscaped<Tag>(OS, "[noise]");
|
|
else if (CID.isError())
|
|
writeEscaped<Tag>(OS, "[error]");
|
|
else
|
|
OS << CID.getId();
|
|
}
|
|
|
|
template <EscapeTag Tag>
|
|
static void writeMeasurementValue(raw_ostream &OS, const double Value) {
|
|
// Given Value, if we wanted to serialize it to a string,
|
|
// how many base-10 digits will we need to store, max?
|
|
static constexpr auto MaxDigitCount =
|
|
std::numeric_limits<decltype(Value)>::max_digits10;
|
|
// Also, we will need a decimal separator.
|
|
static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
|
|
// So how long of a string will the serialization produce, max?
|
|
static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;
|
|
|
|
// WARNING: when changing the format, also adjust the small-size estimate ^.
|
|
static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");
|
|
|
|
writeEscaped<Tag>(
|
|
OS, formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
|
|
}
|
|
|
|
template <typename EscapeTag, EscapeTag Tag>
|
|
void Analysis::writeSnippet(raw_ostream &OS, ArrayRef<uint8_t> Bytes,
|
|
const char *Separator) const {
|
|
SmallVector<std::string, 3> Lines;
|
|
// Parse the asm snippet and print it.
|
|
while (!Bytes.empty()) {
|
|
MCInst MI;
|
|
uint64_t MISize = 0;
|
|
if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, nulls())) {
|
|
writeEscaped<Tag>(OS, join(Lines, Separator));
|
|
writeEscaped<Tag>(OS, Separator);
|
|
writeEscaped<Tag>(OS, "[error decoding asm snippet]");
|
|
return;
|
|
}
|
|
SmallString<128> InstPrinterStr; // FIXME: magic number.
|
|
raw_svector_ostream OSS(InstPrinterStr);
|
|
InstPrinter_->printInst(&MI, 0, "", *SubtargetInfo_, OSS);
|
|
Bytes = Bytes.drop_front(MISize);
|
|
Lines.emplace_back(StringRef(InstPrinterStr).trim());
|
|
}
|
|
writeEscaped<Tag>(OS, join(Lines, Separator));
|
|
}
|
|
|
|
// Prints a row representing an instruction, along with scheduling info and
|
|
// point coordinates (measurements).
|
|
void Analysis::printInstructionRowCsv(const size_t PointId,
|
|
raw_ostream &OS) const {
|
|
const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
|
|
writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
|
|
OS << kCsvSep;
|
|
writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
|
|
OS << kCsvSep;
|
|
writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
|
|
OS << kCsvSep;
|
|
assert(!Point.Key.Instructions.empty());
|
|
const MCInst &MCI = Point.keyInstruction();
|
|
unsigned SchedClassId;
|
|
std::tie(SchedClassId, std::ignore) = ResolvedSchedClass::resolveSchedClassId(
|
|
*SubtargetInfo_, *InstrInfo_, MCI);
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
const MCSchedClassDesc *const SCDesc =
|
|
SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
|
|
writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
|
|
#else
|
|
OS << SchedClassId;
|
|
#endif
|
|
for (const auto &Measurement : Point.Measurements) {
|
|
OS << kCsvSep;
|
|
writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
Analysis::Analysis(const Target &Target, std::unique_ptr<MCInstrInfo> InstrInfo,
|
|
const InstructionBenchmarkClustering &Clustering,
|
|
double AnalysisInconsistencyEpsilon,
|
|
bool AnalysisDisplayUnstableOpcodes,
|
|
const std::string &ForceCpuName)
|
|
: Clustering_(Clustering), InstrInfo_(std::move(InstrInfo)),
|
|
AnalysisInconsistencyEpsilonSquared_(AnalysisInconsistencyEpsilon *
|
|
AnalysisInconsistencyEpsilon),
|
|
AnalysisDisplayUnstableOpcodes_(AnalysisDisplayUnstableOpcodes) {
|
|
if (Clustering.getPoints().empty())
|
|
return;
|
|
|
|
const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
|
|
const std::string CpuName =
|
|
ForceCpuName.empty() ? FirstPoint.CpuName : ForceCpuName;
|
|
RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
|
|
MCTargetOptions MCOptions;
|
|
AsmInfo_.reset(
|
|
Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple, MCOptions));
|
|
SubtargetInfo_.reset(
|
|
Target.createMCSubtargetInfo(FirstPoint.LLVMTriple, CpuName, ""));
|
|
InstPrinter_.reset(Target.createMCInstPrinter(
|
|
Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
|
|
*InstrInfo_, *RegInfo_));
|
|
|
|
Context_ =
|
|
std::make_unique<MCContext>(Triple(FirstPoint.LLVMTriple), AsmInfo_.get(),
|
|
RegInfo_.get(), SubtargetInfo_.get());
|
|
Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
|
|
assert(Disasm_ && "cannot create MCDisassembler. missing call to "
|
|
"InitializeXXXTargetDisassembler ?");
|
|
}
|
|
|
|
template <>
|
|
Error Analysis::run<Analysis::PrintClusters>(raw_ostream &OS) const {
|
|
if (Clustering_.getPoints().empty())
|
|
return Error::success();
|
|
|
|
// Write the header.
|
|
OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
|
|
<< kCsvSep << "sched_class";
|
|
for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
|
|
OS << kCsvSep;
|
|
writeEscaped<kEscapeCsv>(OS, Measurement.Key);
|
|
}
|
|
OS << "\n";
|
|
|
|
// Write the points.
|
|
for (const auto &ClusterIt : Clustering_.getValidClusters()) {
|
|
for (const size_t PointId : ClusterIt.PointIndices) {
|
|
printInstructionRowCsv(PointId, OS);
|
|
}
|
|
OS << "\n\n";
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
|
|
ResolvedSchedClass &&RSC)
|
|
: RSC(std::move(RSC)) {}
|
|
|
|
std::vector<Analysis::ResolvedSchedClassAndPoints>
|
|
Analysis::makePointsPerSchedClass() const {
|
|
std::vector<ResolvedSchedClassAndPoints> Entries;
|
|
// Maps SchedClassIds to index in result.
|
|
std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
|
|
const auto &Points = Clustering_.getPoints();
|
|
for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
|
|
const InstructionBenchmark &Point = Points[PointId];
|
|
if (!Point.Error.empty())
|
|
continue;
|
|
assert(!Point.Key.Instructions.empty());
|
|
// FIXME: we should be using the tuple of classes for instructions in the
|
|
// snippet as key.
|
|
const MCInst &MCI = Point.keyInstruction();
|
|
unsigned SchedClassId;
|
|
bool WasVariant;
|
|
std::tie(SchedClassId, WasVariant) =
|
|
ResolvedSchedClass::resolveSchedClassId(*SubtargetInfo_, *InstrInfo_,
|
|
MCI);
|
|
const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
|
|
if (IndexIt == SchedClassIdToIndex.end()) {
|
|
// Create a new entry.
|
|
SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
|
|
ResolvedSchedClassAndPoints Entry(
|
|
ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
|
|
Entry.PointIds.push_back(PointId);
|
|
Entries.push_back(std::move(Entry));
|
|
} else {
|
|
// Append to the existing entry.
|
|
Entries[IndexIt->second].PointIds.push_back(PointId);
|
|
}
|
|
}
|
|
return Entries;
|
|
}
|
|
|
|
// Parallel benchmarks repeat the same opcode multiple times. Just show this
|
|
// opcode and show the whole snippet only on hover.
|
|
static void writeParallelSnippetHtml(raw_ostream &OS,
|
|
const std::vector<MCInst> &Instructions,
|
|
const MCInstrInfo &InstrInfo) {
|
|
if (Instructions.empty())
|
|
return;
|
|
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
|
|
if (Instructions.size() > 1)
|
|
OS << " (x" << Instructions.size() << ")";
|
|
}
|
|
|
|
// Latency tries to find a serial path. Just show the opcode path and show the
|
|
// whole snippet only on hover.
|
|
static void writeLatencySnippetHtml(raw_ostream &OS,
|
|
const std::vector<MCInst> &Instructions,
|
|
const MCInstrInfo &InstrInfo) {
|
|
bool First = true;
|
|
for (const MCInst &Instr : Instructions) {
|
|
if (First)
|
|
First = false;
|
|
else
|
|
OS << " → ";
|
|
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
|
|
}
|
|
}
|
|
|
|
void Analysis::printPointHtml(const InstructionBenchmark &Point,
|
|
llvm::raw_ostream &OS) const {
|
|
OS << "<li><span class=\"mono\" title=\"";
|
|
writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, "\n");
|
|
OS << "\">";
|
|
switch (Point.Mode) {
|
|
case InstructionBenchmark::Latency:
|
|
writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
|
|
break;
|
|
case InstructionBenchmark::Uops:
|
|
case InstructionBenchmark::InverseThroughput:
|
|
writeParallelSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid mode");
|
|
}
|
|
OS << "</span> <span class=\"mono\">";
|
|
writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
|
|
OS << "</span></li>";
|
|
}
|
|
|
|
void Analysis::printSchedClassClustersHtml(
|
|
const std::vector<SchedClassCluster> &Clusters,
|
|
const ResolvedSchedClass &RSC, raw_ostream &OS) const {
|
|
const auto &Points = Clustering_.getPoints();
|
|
OS << "<table class=\"sched-class-clusters\">";
|
|
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
|
|
assert(!Clusters.empty());
|
|
for (const auto &Measurement :
|
|
Points[Clusters[0].getPointIds()[0]].Measurements) {
|
|
OS << "<th>";
|
|
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
|
|
OS << "</th>";
|
|
}
|
|
OS << "</tr>";
|
|
for (const SchedClassCluster &Cluster : Clusters) {
|
|
OS << "<tr class=\""
|
|
<< (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_,
|
|
AnalysisInconsistencyEpsilonSquared_)
|
|
? "good-cluster"
|
|
: "bad-cluster")
|
|
<< "\"><td>";
|
|
writeClusterId<kEscapeHtml>(OS, Cluster.id());
|
|
OS << "</td><td><ul>";
|
|
for (const size_t PointId : Cluster.getPointIds()) {
|
|
printPointHtml(Points[PointId], OS);
|
|
}
|
|
OS << "</ul></td>";
|
|
for (const auto &Stats : Cluster.getCentroid().getStats()) {
|
|
OS << "<td class=\"measurement\">";
|
|
writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
|
|
OS << "<br><span class=\"minmax\">[";
|
|
writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
|
|
OS << ";";
|
|
writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
|
|
OS << "]</span></td>";
|
|
}
|
|
OS << "</tr>";
|
|
}
|
|
OS << "</table>";
|
|
}
|
|
|
|
void Analysis::SchedClassCluster::addPoint(
|
|
size_t PointId, const InstructionBenchmarkClustering &Clustering) {
|
|
PointIds.push_back(PointId);
|
|
const auto &Point = Clustering.getPoints()[PointId];
|
|
if (ClusterId.isUndef())
|
|
ClusterId = Clustering.getClusterIdForPoint(PointId);
|
|
assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
|
|
|
|
Centroid.addPoint(Point.Measurements);
|
|
}
|
|
|
|
bool Analysis::SchedClassCluster::measurementsMatch(
|
|
const MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
|
|
const InstructionBenchmarkClustering &Clustering,
|
|
const double AnalysisInconsistencyEpsilonSquared_) const {
|
|
assert(!Clustering.getPoints().empty());
|
|
const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
|
|
|
|
if (!Centroid.validate(Mode))
|
|
return false;
|
|
|
|
const std::vector<BenchmarkMeasure> ClusterCenterPoint =
|
|
Centroid.getAsPoint();
|
|
|
|
const std::vector<BenchmarkMeasure> SchedClassPoint =
|
|
RSC.getAsPoint(Mode, STI, Centroid.getStats());
|
|
if (SchedClassPoint.empty())
|
|
return false; // In Uops mode validate() may not be enough.
|
|
|
|
assert(ClusterCenterPoint.size() == SchedClassPoint.size() &&
|
|
"Expected measured/sched data dimensions to match.");
|
|
|
|
return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint,
|
|
AnalysisInconsistencyEpsilonSquared_);
|
|
}
|
|
|
|
void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
|
|
raw_ostream &OS) const {
|
|
OS << "<table class=\"sched-class-desc\">";
|
|
OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
|
|
"th><th>RThroughput</th><th>WriteProcRes</th><th title=\"This is the "
|
|
"idealized unit resource (port) pressure assuming ideal "
|
|
"distribution\">Idealized Resource Pressure</th></tr>";
|
|
if (RSC.SCDesc->isValid()) {
|
|
const auto &SM = SubtargetInfo_->getSchedModel();
|
|
OS << "<tr><td>✔</td>";
|
|
OS << "<td>" << (RSC.WasVariant ? "✔" : "✕") << "</td>";
|
|
OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
|
|
// Latencies.
|
|
OS << "<td><ul>";
|
|
for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
|
|
const auto *const Entry =
|
|
SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
|
|
OS << "<li>" << Entry->Cycles;
|
|
if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
|
|
// Dismabiguate if more than 1 latency.
|
|
OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
|
|
}
|
|
OS << "</li>";
|
|
}
|
|
OS << "</ul></td>";
|
|
// inverse throughput.
|
|
OS << "<td>";
|
|
writeMeasurementValue<kEscapeHtml>(
|
|
OS,
|
|
MCSchedModel::getReciprocalThroughput(*SubtargetInfo_, *RSC.SCDesc));
|
|
OS << "</td>";
|
|
// WriteProcRes.
|
|
OS << "<td><ul>";
|
|
for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
|
|
OS << "<li><span class=\"mono\">";
|
|
writeEscaped<kEscapeHtml>(OS,
|
|
SM.getProcResource(WPR.ProcResourceIdx)->Name);
|
|
OS << "</span>: " << WPR.Cycles << "</li>";
|
|
}
|
|
OS << "</ul></td>";
|
|
// Idealized port pressure.
|
|
OS << "<td><ul>";
|
|
for (const auto &Pressure : RSC.IdealizedProcResPressure) {
|
|
OS << "<li><span class=\"mono\">";
|
|
writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
|
|
.getProcResource(Pressure.first)
|
|
->Name);
|
|
OS << "</span>: ";
|
|
writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
|
|
OS << "</li>";
|
|
}
|
|
OS << "</ul></td>";
|
|
OS << "</tr>";
|
|
} else {
|
|
OS << "<tr><td>✕</td><td></td><td></td></tr>";
|
|
}
|
|
OS << "</table>";
|
|
}
|
|
|
|
void Analysis::printClusterRawHtml(
|
|
const InstructionBenchmarkClustering::ClusterId &Id, StringRef display_name,
|
|
llvm::raw_ostream &OS) const {
|
|
const auto &Points = Clustering_.getPoints();
|
|
const auto &Cluster = Clustering_.getCluster(Id);
|
|
if (Cluster.PointIndices.empty())
|
|
return;
|
|
|
|
OS << "<div class=\"inconsistency\"><p>" << display_name << " Cluster ("
|
|
<< Cluster.PointIndices.size() << " points)</p>";
|
|
OS << "<table class=\"sched-class-clusters\">";
|
|
// Table Header.
|
|
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
|
|
for (const auto &Measurement : Points[Cluster.PointIndices[0]].Measurements) {
|
|
OS << "<th>";
|
|
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
|
|
OS << "</th>";
|
|
}
|
|
OS << "</tr>";
|
|
|
|
// Point data.
|
|
for (const auto &PointId : Cluster.PointIndices) {
|
|
OS << "<tr class=\"bad-cluster\"><td>" << display_name << "</td><td><ul>";
|
|
printPointHtml(Points[PointId], OS);
|
|
OS << "</ul></td>";
|
|
for (const auto &Measurement : Points[PointId].Measurements) {
|
|
OS << "<td class=\"measurement\">";
|
|
writeMeasurementValue<kEscapeHtml>(OS, Measurement.PerInstructionValue);
|
|
}
|
|
OS << "</tr>";
|
|
}
|
|
OS << "</table>";
|
|
|
|
OS << "</div>";
|
|
|
|
} // namespace exegesis
|
|
|
|
static constexpr const char kHtmlHead[] = R"(
|
|
<head>
|
|
<title>llvm-exegesis Analysis Results</title>
|
|
<style>
|
|
body {
|
|
font-family: sans-serif
|
|
}
|
|
span.sched-class-name {
|
|
font-weight: bold;
|
|
font-family: monospace;
|
|
}
|
|
span.opcode {
|
|
font-family: monospace;
|
|
}
|
|
span.config {
|
|
font-family: monospace;
|
|
}
|
|
div.inconsistency {
|
|
margin-top: 50px;
|
|
}
|
|
table {
|
|
margin-left: 50px;
|
|
border-collapse: collapse;
|
|
}
|
|
table, table tr,td,th {
|
|
border: 1px solid #444;
|
|
}
|
|
table ul {
|
|
padding-left: 0px;
|
|
margin: 0px;
|
|
list-style-type: none;
|
|
}
|
|
table.sched-class-clusters td {
|
|
padding-left: 10px;
|
|
padding-right: 10px;
|
|
padding-top: 10px;
|
|
padding-bottom: 10px;
|
|
}
|
|
table.sched-class-desc td {
|
|
padding-left: 10px;
|
|
padding-right: 10px;
|
|
padding-top: 2px;
|
|
padding-bottom: 2px;
|
|
}
|
|
span.mono {
|
|
font-family: monospace;
|
|
}
|
|
td.measurement {
|
|
text-align: center;
|
|
}
|
|
tr.good-cluster td.measurement {
|
|
color: #292
|
|
}
|
|
tr.bad-cluster td.measurement {
|
|
color: #922
|
|
}
|
|
tr.good-cluster td.measurement span.minmax {
|
|
color: #888;
|
|
}
|
|
tr.bad-cluster td.measurement span.minmax {
|
|
color: #888;
|
|
}
|
|
</style>
|
|
</head>
|
|
)";
|
|
|
|
template <>
|
|
Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
|
|
raw_ostream &OS) const {
|
|
const auto &FirstPoint = Clustering_.getPoints()[0];
|
|
// Print the header.
|
|
OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
|
|
OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
|
|
OS << "<h3>Triple: <span class=\"mono\">";
|
|
writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
|
|
OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
|
|
writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
|
|
OS << "</span></h3>";
|
|
|
|
for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
|
|
if (!RSCAndPoints.RSC.SCDesc)
|
|
continue;
|
|
// Bucket sched class points into sched class clusters.
|
|
std::vector<SchedClassCluster> SchedClassClusters;
|
|
for (const size_t PointId : RSCAndPoints.PointIds) {
|
|
const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
|
|
if (!ClusterId.isValid())
|
|
continue; // Ignore noise and errors. FIXME: take noise into account ?
|
|
if (ClusterId.isUnstable() ^ AnalysisDisplayUnstableOpcodes_)
|
|
continue; // Either display stable or unstable clusters only.
|
|
auto SchedClassClusterIt = llvm::find_if(
|
|
SchedClassClusters, [ClusterId](const SchedClassCluster &C) {
|
|
return C.id() == ClusterId;
|
|
});
|
|
if (SchedClassClusterIt == SchedClassClusters.end()) {
|
|
SchedClassClusters.emplace_back();
|
|
SchedClassClusterIt = std::prev(SchedClassClusters.end());
|
|
}
|
|
SchedClassClusterIt->addPoint(PointId, Clustering_);
|
|
}
|
|
|
|
// Print any scheduling class that has at least one cluster that does not
|
|
// match the checked-in data.
|
|
if (all_of(SchedClassClusters, [this,
|
|
&RSCAndPoints](const SchedClassCluster &C) {
|
|
return C.measurementsMatch(*SubtargetInfo_, RSCAndPoints.RSC,
|
|
Clustering_,
|
|
AnalysisInconsistencyEpsilonSquared_);
|
|
}))
|
|
continue; // Nothing weird.
|
|
|
|
OS << "<div class=\"inconsistency\"><p>Sched Class <span "
|
|
"class=\"sched-class-name\">";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
|
|
#else
|
|
OS << RSCAndPoints.RSC.SchedClassId;
|
|
#endif
|
|
OS << "</span> contains instructions whose performance characteristics do"
|
|
" not match that of LLVM:</p>";
|
|
printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
|
|
OS << "<p>llvm SchedModel data:</p>";
|
|
printSchedClassDescHtml(RSCAndPoints.RSC, OS);
|
|
OS << "</div>";
|
|
}
|
|
|
|
printClusterRawHtml(InstructionBenchmarkClustering::ClusterId::noise(),
|
|
"[noise]", OS);
|
|
|
|
OS << "</body></html>";
|
|
return Error::success();
|
|
}
|
|
|
|
} // namespace exegesis
|
|
} // namespace llvm
|