1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-31 07:52:55 +01:00
llvm-mirror/test/CodeGen/SystemZ/xor-01.ll
Richard Sandiford f4f67cacd7 [SystemZ] Add NRK, ORK and XRK
The atomic tests assume the two-operand forms, so I've restricted them to z10.

Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried).  Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.

llvm-svn: 186683
2013-07-19 16:21:55 +00:00

176 lines
4.2 KiB
LLVM

; Test 32-bit XORs in which the second operand is variable.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s
declare i32 @foo()
; Check XR.
define i32 @f1(i32 %a, i32 %b) {
; CHECK-LABEL: f1:
; CHECK: xr %r2, %r3
; CHECK: br %r14
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the low end of the X range.
define i32 @f2(i32 %a, i32 *%src) {
; CHECK-LABEL: f2:
; CHECK: x %r2, 0(%r3)
; CHECK: br %r14
%b = load i32 *%src
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the high end of the aligned X range.
define i32 @f3(i32 %a, i32 *%src) {
; CHECK-LABEL: f3:
; CHECK: x %r2, 4092(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 1023
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the next word up, which should use XY instead of X.
define i32 @f4(i32 %a, i32 *%src) {
; CHECK-LABEL: f4:
; CHECK: xy %r2, 4096(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 1024
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the high end of the aligned XY range.
define i32 @f5(i32 %a, i32 *%src) {
; CHECK-LABEL: f5:
; CHECK: xy %r2, 524284(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 131071
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the next word up, which needs separate address logic.
; Other sequences besides this one would be OK.
define i32 @f6(i32 %a, i32 *%src) {
; CHECK-LABEL: f6:
; CHECK: agfi %r3, 524288
; CHECK: x %r2, 0(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 131072
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the high end of the negative aligned XY range.
define i32 @f7(i32 %a, i32 *%src) {
; CHECK-LABEL: f7:
; CHECK: xy %r2, -4(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 -1
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the low end of the XY range.
define i32 @f8(i32 %a, i32 *%src) {
; CHECK-LABEL: f8:
; CHECK: xy %r2, -524288(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 -131072
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check the next word down, which needs separate address logic.
; Other sequences besides this one would be OK.
define i32 @f9(i32 %a, i32 *%src) {
; CHECK-LABEL: f9:
; CHECK: agfi %r3, -524292
; CHECK: x %r2, 0(%r3)
; CHECK: br %r14
%ptr = getelementptr i32 *%src, i64 -131073
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check that X allows an index.
define i32 @f10(i32 %a, i64 %src, i64 %index) {
; CHECK-LABEL: f10:
; CHECK: x %r2, 4092({{%r4,%r3|%r3,%r4}})
; CHECK: br %r14
%add1 = add i64 %src, %index
%add2 = add i64 %add1, 4092
%ptr = inttoptr i64 %add2 to i32 *
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check that XY allows an index.
define i32 @f11(i32 %a, i64 %src, i64 %index) {
; CHECK-LABEL: f11:
; CHECK: xy %r2, 4096({{%r4,%r3|%r3,%r4}})
; CHECK: br %r14
%add1 = add i64 %src, %index
%add2 = add i64 %add1, 4096
%ptr = inttoptr i64 %add2 to i32 *
%b = load i32 *%ptr
%xor = xor i32 %a, %b
ret i32 %xor
}
; Check that XORs of spilled values can use X rather than XR.
define i32 @f12(i32 *%ptr0) {
; CHECK-LABEL: f12:
; CHECK: brasl %r14, foo@PLT
; CHECK: x %r2, 16{{[04]}}(%r15)
; CHECK: br %r14
%ptr1 = getelementptr i32 *%ptr0, i64 2
%ptr2 = getelementptr i32 *%ptr0, i64 4
%ptr3 = getelementptr i32 *%ptr0, i64 6
%ptr4 = getelementptr i32 *%ptr0, i64 8
%ptr5 = getelementptr i32 *%ptr0, i64 10
%ptr6 = getelementptr i32 *%ptr0, i64 12
%ptr7 = getelementptr i32 *%ptr0, i64 14
%ptr8 = getelementptr i32 *%ptr0, i64 16
%ptr9 = getelementptr i32 *%ptr0, i64 18
%val0 = load i32 *%ptr0
%val1 = load i32 *%ptr1
%val2 = load i32 *%ptr2
%val3 = load i32 *%ptr3
%val4 = load i32 *%ptr4
%val5 = load i32 *%ptr5
%val6 = load i32 *%ptr6
%val7 = load i32 *%ptr7
%val8 = load i32 *%ptr8
%val9 = load i32 *%ptr9
%ret = call i32 @foo()
%xor0 = xor i32 %ret, %val0
%xor1 = xor i32 %xor0, %val1
%xor2 = xor i32 %xor1, %val2
%xor3 = xor i32 %xor2, %val3
%xor4 = xor i32 %xor3, %val4
%xor5 = xor i32 %xor4, %val5
%xor6 = xor i32 %xor5, %val6
%xor7 = xor i32 %xor6, %val7
%xor8 = xor i32 %xor7, %val8
%xor9 = xor i32 %xor8, %val9
ret i32 %xor9
}