mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
ebb8c67ccd
We can't declare unique_function that has in its arguments a reference to a template type with an incomplete argument. For instance, we can't declare unique_function<void(SmallVectorImpl<A>&)> when A is forward declared. This is because SFINAE will trigger a hard error in this case, when instantiating IsSizeLessThanThresholdT with the incomplete type. This patch specialize AdjustedParamT for references to remove this error. Committed on behalf of: @math-fehr (Fehr Mathieu) Reviewed By: DaniilSuchkov, yrouban
411 lines
16 KiB
C++
411 lines
16 KiB
C++
//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides a collection of function (or more generally, callable)
|
|
/// type erasure utilities supplementing those provided by the standard library
|
|
/// in `<function>`.
|
|
///
|
|
/// It provides `unique_function`, which works like `std::function` but supports
|
|
/// move-only callable objects and const-qualification.
|
|
///
|
|
/// Future plans:
|
|
/// - Add a `function` that provides ref-qualified support, which doesn't work
|
|
/// with `std::function`.
|
|
/// - Provide support for specifying multiple signatures to type erase callable
|
|
/// objects with an overload set, such as those produced by generic lambdas.
|
|
/// - Expand to include a copyable utility that directly replaces std::function
|
|
/// but brings the above improvements.
|
|
///
|
|
/// Note that LLVM's utilities are greatly simplified by not supporting
|
|
/// allocators.
|
|
///
|
|
/// If the standard library ever begins to provide comparable facilities we can
|
|
/// consider switching to those.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_FUNCTIONEXTRAS_H
|
|
#define LLVM_ADT_FUNCTIONEXTRAS_H
|
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLForwardCompat.h"
|
|
#include "llvm/Support/MemAlloc.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <memory>
|
|
#include <type_traits>
|
|
|
|
namespace llvm {
|
|
|
|
/// unique_function is a type-erasing functor similar to std::function.
|
|
///
|
|
/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
|
|
/// Accordingly, it is movable but not copyable.
|
|
///
|
|
/// It supports const-qualification:
|
|
/// - unique_function<int() const> has a const operator().
|
|
/// It can only hold functions which themselves have a const operator().
|
|
/// - unique_function<int()> has a non-const operator().
|
|
/// It can hold functions with a non-const operator(), like mutable lambdas.
|
|
template <typename FunctionT> class unique_function;
|
|
|
|
namespace detail {
|
|
|
|
template <typename T>
|
|
using EnableIfTrivial =
|
|
std::enable_if_t<llvm::is_trivially_move_constructible<T>::value &&
|
|
std::is_trivially_destructible<T>::value>;
|
|
template <typename CallableT, typename ThisT>
|
|
using EnableUnlessSameType =
|
|
std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
|
|
template <typename CallableT, typename Ret, typename... Params>
|
|
using EnableIfCallable =
|
|
std::enable_if_t<std::is_void<Ret>::value ||
|
|
std::is_convertible<decltype(std::declval<CallableT>()(
|
|
std::declval<Params>()...)),
|
|
Ret>::value>;
|
|
|
|
template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
|
|
protected:
|
|
static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
|
|
|
|
template <typename T, class = void>
|
|
struct IsSizeLessThanThresholdT : std::false_type {};
|
|
|
|
template <typename T>
|
|
struct IsSizeLessThanThresholdT<
|
|
T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
|
|
|
|
// Provide a type function to map parameters that won't observe extra copies
|
|
// or moves and which are small enough to likely pass in register to values
|
|
// and all other types to l-value reference types. We use this to compute the
|
|
// types used in our erased call utility to minimize copies and moves unless
|
|
// doing so would force things unnecessarily into memory.
|
|
//
|
|
// The heuristic used is related to common ABI register passing conventions.
|
|
// It doesn't have to be exact though, and in one way it is more strict
|
|
// because we want to still be able to observe either moves *or* copies.
|
|
template <typename T> struct AdjustedParamTBase {
|
|
static_assert(!std::is_reference<T>::value,
|
|
"references should be handled by template specialization");
|
|
using type = typename std::conditional<
|
|
llvm::is_trivially_copy_constructible<T>::value &&
|
|
llvm::is_trivially_move_constructible<T>::value &&
|
|
IsSizeLessThanThresholdT<T>::value,
|
|
T, T &>::type;
|
|
};
|
|
|
|
// This specialization ensures that 'AdjustedParam<V<T>&>' or
|
|
// 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
|
|
// an incomplete type and V a templated type.
|
|
template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
|
|
template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
|
|
|
|
template <typename T>
|
|
using AdjustedParamT = typename AdjustedParamTBase<T>::type;
|
|
|
|
// The type of the erased function pointer we use as a callback to dispatch to
|
|
// the stored callable when it is trivial to move and destroy.
|
|
using CallPtrT = ReturnT (*)(void *CallableAddr,
|
|
AdjustedParamT<ParamTs>... Params);
|
|
using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
|
|
using DestroyPtrT = void (*)(void *CallableAddr);
|
|
|
|
/// A struct to hold a single trivial callback with sufficient alignment for
|
|
/// our bitpacking.
|
|
struct alignas(8) TrivialCallback {
|
|
CallPtrT CallPtr;
|
|
};
|
|
|
|
/// A struct we use to aggregate three callbacks when we need full set of
|
|
/// operations.
|
|
struct alignas(8) NonTrivialCallbacks {
|
|
CallPtrT CallPtr;
|
|
MovePtrT MovePtr;
|
|
DestroyPtrT DestroyPtr;
|
|
};
|
|
|
|
// Create a pointer union between either a pointer to a static trivial call
|
|
// pointer in a struct or a pointer to a static struct of the call, move, and
|
|
// destroy pointers.
|
|
using CallbackPointerUnionT =
|
|
PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
|
|
|
|
// The main storage buffer. This will either have a pointer to out-of-line
|
|
// storage or an inline buffer storing the callable.
|
|
union StorageUnionT {
|
|
// For out-of-line storage we keep a pointer to the underlying storage and
|
|
// the size. This is enough to deallocate the memory.
|
|
struct OutOfLineStorageT {
|
|
void *StoragePtr;
|
|
size_t Size;
|
|
size_t Alignment;
|
|
} OutOfLineStorage;
|
|
static_assert(
|
|
sizeof(OutOfLineStorageT) <= InlineStorageSize,
|
|
"Should always use all of the out-of-line storage for inline storage!");
|
|
|
|
// For in-line storage, we just provide an aligned character buffer. We
|
|
// provide three pointers worth of storage here.
|
|
// This is mutable as an inlined `const unique_function<void() const>` may
|
|
// still modify its own mutable members.
|
|
mutable
|
|
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
|
|
InlineStorage;
|
|
} StorageUnion;
|
|
|
|
// A compressed pointer to either our dispatching callback or our table of
|
|
// dispatching callbacks and the flag for whether the callable itself is
|
|
// stored inline or not.
|
|
PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
|
|
|
|
bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
|
|
|
|
bool isTrivialCallback() const {
|
|
return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
|
|
}
|
|
|
|
CallPtrT getTrivialCallback() const {
|
|
return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
|
|
}
|
|
|
|
NonTrivialCallbacks *getNonTrivialCallbacks() const {
|
|
return CallbackAndInlineFlag.getPointer()
|
|
.template get<NonTrivialCallbacks *>();
|
|
}
|
|
|
|
CallPtrT getCallPtr() const {
|
|
return isTrivialCallback() ? getTrivialCallback()
|
|
: getNonTrivialCallbacks()->CallPtr;
|
|
}
|
|
|
|
// These three functions are only const in the narrow sense. They return
|
|
// mutable pointers to function state.
|
|
// This allows unique_function<T const>::operator() to be const, even if the
|
|
// underlying functor may be internally mutable.
|
|
//
|
|
// const callers must ensure they're only used in const-correct ways.
|
|
void *getCalleePtr() const {
|
|
return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
|
|
}
|
|
void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
|
|
void *getOutOfLineStorage() const {
|
|
return StorageUnion.OutOfLineStorage.StoragePtr;
|
|
}
|
|
|
|
size_t getOutOfLineStorageSize() const {
|
|
return StorageUnion.OutOfLineStorage.Size;
|
|
}
|
|
size_t getOutOfLineStorageAlignment() const {
|
|
return StorageUnion.OutOfLineStorage.Alignment;
|
|
}
|
|
|
|
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
|
|
StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
|
|
}
|
|
|
|
template <typename CalledAsT>
|
|
static ReturnT CallImpl(void *CallableAddr,
|
|
AdjustedParamT<ParamTs>... Params) {
|
|
auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
|
|
return Func(std::forward<ParamTs>(Params)...);
|
|
}
|
|
|
|
template <typename CallableT>
|
|
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
|
|
new (LHSCallableAddr)
|
|
CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
|
|
}
|
|
|
|
template <typename CallableT>
|
|
static void DestroyImpl(void *CallableAddr) noexcept {
|
|
reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
|
|
}
|
|
|
|
// The pointers to call/move/destroy functions are determined for each
|
|
// callable type (and called-as type, which determines the overload chosen).
|
|
// (definitions are out-of-line).
|
|
|
|
// By default, we need an object that contains all the different
|
|
// type erased behaviors needed. Create a static instance of the struct type
|
|
// here and each instance will contain a pointer to it.
|
|
// Wrap in a struct to avoid https://gcc.gnu.org/PR71954
|
|
template <typename CallableT, typename CalledAs, typename Enable = void>
|
|
struct CallbacksHolder {
|
|
static NonTrivialCallbacks Callbacks;
|
|
};
|
|
// See if we can create a trivial callback. We need the callable to be
|
|
// trivially moved and trivially destroyed so that we don't have to store
|
|
// type erased callbacks for those operations.
|
|
template <typename CallableT, typename CalledAs>
|
|
struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
|
|
static TrivialCallback Callbacks;
|
|
};
|
|
|
|
// A simple tag type so the call-as type to be passed to the constructor.
|
|
template <typename T> struct CalledAs {};
|
|
|
|
// Essentially the "main" unique_function constructor, but subclasses
|
|
// provide the qualified type to be used for the call.
|
|
// (We always store a T, even if the call will use a pointer to const T).
|
|
template <typename CallableT, typename CalledAsT>
|
|
UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
|
|
bool IsInlineStorage = true;
|
|
void *CallableAddr = getInlineStorage();
|
|
if (sizeof(CallableT) > InlineStorageSize ||
|
|
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
|
|
IsInlineStorage = false;
|
|
// Allocate out-of-line storage. FIXME: Use an explicit alignment
|
|
// parameter in C++17 mode.
|
|
auto Size = sizeof(CallableT);
|
|
auto Alignment = alignof(CallableT);
|
|
CallableAddr = allocate_buffer(Size, Alignment);
|
|
setOutOfLineStorage(CallableAddr, Size, Alignment);
|
|
}
|
|
|
|
// Now move into the storage.
|
|
new (CallableAddr) CallableT(std::move(Callable));
|
|
CallbackAndInlineFlag.setPointerAndInt(
|
|
&CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
|
|
}
|
|
|
|
~UniqueFunctionBase() {
|
|
if (!CallbackAndInlineFlag.getPointer())
|
|
return;
|
|
|
|
// Cache this value so we don't re-check it after type-erased operations.
|
|
bool IsInlineStorage = isInlineStorage();
|
|
|
|
if (!isTrivialCallback())
|
|
getNonTrivialCallbacks()->DestroyPtr(
|
|
IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
|
|
|
|
if (!IsInlineStorage)
|
|
deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
|
|
getOutOfLineStorageAlignment());
|
|
}
|
|
|
|
UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
|
|
// Copy the callback and inline flag.
|
|
CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
|
|
|
|
// If the RHS is empty, just copying the above is sufficient.
|
|
if (!RHS)
|
|
return;
|
|
|
|
if (!isInlineStorage()) {
|
|
// The out-of-line case is easiest to move.
|
|
StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
|
|
} else if (isTrivialCallback()) {
|
|
// Move is trivial, just memcpy the bytes across.
|
|
memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
|
|
} else {
|
|
// Non-trivial move, so dispatch to a type-erased implementation.
|
|
getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
|
|
RHS.getInlineStorage());
|
|
}
|
|
|
|
// Clear the old callback and inline flag to get back to as-if-null.
|
|
RHS.CallbackAndInlineFlag = {};
|
|
|
|
#ifndef NDEBUG
|
|
// In debug builds, we also scribble across the rest of the storage.
|
|
memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
|
|
#endif
|
|
}
|
|
|
|
UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
|
|
if (this == &RHS)
|
|
return *this;
|
|
|
|
// Because we don't try to provide any exception safety guarantees we can
|
|
// implement move assignment very simply by first destroying the current
|
|
// object and then move-constructing over top of it.
|
|
this->~UniqueFunctionBase();
|
|
new (this) UniqueFunctionBase(std::move(RHS));
|
|
return *this;
|
|
}
|
|
|
|
UniqueFunctionBase() = default;
|
|
|
|
public:
|
|
explicit operator bool() const {
|
|
return (bool)CallbackAndInlineFlag.getPointer();
|
|
}
|
|
};
|
|
|
|
template <typename R, typename... P>
|
|
template <typename CallableT, typename CalledAsT, typename Enable>
|
|
typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
|
|
R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
|
|
&CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
|
|
|
|
template <typename R, typename... P>
|
|
template <typename CallableT, typename CalledAsT>
|
|
typename UniqueFunctionBase<R, P...>::TrivialCallback
|
|
UniqueFunctionBase<R, P...>::CallbacksHolder<
|
|
CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
|
|
&CallImpl<CalledAsT>};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename R, typename... P>
|
|
class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
|
|
using Base = detail::UniqueFunctionBase<R, P...>;
|
|
|
|
public:
|
|
unique_function() = default;
|
|
unique_function(std::nullptr_t) {}
|
|
unique_function(unique_function &&) = default;
|
|
unique_function(const unique_function &) = delete;
|
|
unique_function &operator=(unique_function &&) = default;
|
|
unique_function &operator=(const unique_function &) = delete;
|
|
|
|
template <typename CallableT>
|
|
unique_function(
|
|
CallableT Callable,
|
|
detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
|
|
detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
|
|
: Base(std::forward<CallableT>(Callable),
|
|
typename Base::template CalledAs<CallableT>{}) {}
|
|
|
|
R operator()(P... Params) {
|
|
return this->getCallPtr()(this->getCalleePtr(), Params...);
|
|
}
|
|
};
|
|
|
|
template <typename R, typename... P>
|
|
class unique_function<R(P...) const>
|
|
: public detail::UniqueFunctionBase<R, P...> {
|
|
using Base = detail::UniqueFunctionBase<R, P...>;
|
|
|
|
public:
|
|
unique_function() = default;
|
|
unique_function(std::nullptr_t) {}
|
|
unique_function(unique_function &&) = default;
|
|
unique_function(const unique_function &) = delete;
|
|
unique_function &operator=(unique_function &&) = default;
|
|
unique_function &operator=(const unique_function &) = delete;
|
|
|
|
template <typename CallableT>
|
|
unique_function(
|
|
CallableT Callable,
|
|
detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
|
|
detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
|
|
: Base(std::forward<CallableT>(Callable),
|
|
typename Base::template CalledAs<const CallableT>{}) {}
|
|
|
|
R operator()(P... Params) const {
|
|
return this->getCallPtr()(this->getCalleePtr(), Params...);
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ADT_FUNCTIONEXTRAS_H
|