mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
5697956ae9
> This reapplies c0f3dfb9, which was reverted following the discovery of > crashes on linux kernel and chromium builds - these issues have since > been fixed, allowing this patch to re-land. This reverts commit 36ec97f76ac0d8be76fb16ac521f55126766267d. The change caused non-determinism in the compiler, see comments on the code review at https://reviews.llvm.org/D91722. Reverting to unbreak people's builds until that can be addressed. This also reverts the follow-up "[DebugInfo] Limit the number of values that may be referenced by a dbg.value" in a0bd6105d80698c53ceaa64bbe6e3b7e7bbf99ee.
646 lines
20 KiB
C++
646 lines
20 KiB
C++
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various classes for working with Instructions and
|
|
// ConstantExprs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_OPERATOR_H
|
|
#define LLVM_IR_OPERATOR_H
|
|
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <cstddef>
|
|
|
|
namespace llvm {
|
|
|
|
/// This is a utility class that provides an abstraction for the common
|
|
/// functionality between Instructions and ConstantExprs.
|
|
class Operator : public User {
|
|
public:
|
|
// The Operator class is intended to be used as a utility, and is never itself
|
|
// instantiated.
|
|
Operator() = delete;
|
|
~Operator() = delete;
|
|
|
|
void *operator new(size_t s) = delete;
|
|
|
|
/// Return the opcode for this Instruction or ConstantExpr.
|
|
unsigned getOpcode() const {
|
|
if (const Instruction *I = dyn_cast<Instruction>(this))
|
|
return I->getOpcode();
|
|
return cast<ConstantExpr>(this)->getOpcode();
|
|
}
|
|
|
|
/// If V is an Instruction or ConstantExpr, return its opcode.
|
|
/// Otherwise return UserOp1.
|
|
static unsigned getOpcode(const Value *V) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getOpcode();
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
return CE->getOpcode();
|
|
return Instruction::UserOp1;
|
|
}
|
|
|
|
static bool classof(const Instruction *) { return true; }
|
|
static bool classof(const ConstantExpr *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) || isa<ConstantExpr>(V);
|
|
}
|
|
};
|
|
|
|
/// Utility class for integer operators which may exhibit overflow - Add, Sub,
|
|
/// Mul, and Shl. It does not include SDiv, despite that operator having the
|
|
/// potential for overflow.
|
|
class OverflowingBinaryOperator : public Operator {
|
|
public:
|
|
enum {
|
|
AnyWrap = 0,
|
|
NoUnsignedWrap = (1 << 0),
|
|
NoSignedWrap = (1 << 1)
|
|
};
|
|
|
|
private:
|
|
friend class Instruction;
|
|
friend class ConstantExpr;
|
|
|
|
void setHasNoUnsignedWrap(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
|
|
}
|
|
void setHasNoSignedWrap(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
|
|
}
|
|
|
|
public:
|
|
/// Test whether this operation is known to never
|
|
/// undergo unsigned overflow, aka the nuw property.
|
|
bool hasNoUnsignedWrap() const {
|
|
return SubclassOptionalData & NoUnsignedWrap;
|
|
}
|
|
|
|
/// Test whether this operation is known to never
|
|
/// undergo signed overflow, aka the nsw property.
|
|
bool hasNoSignedWrap() const {
|
|
return (SubclassOptionalData & NoSignedWrap) != 0;
|
|
}
|
|
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Add ||
|
|
I->getOpcode() == Instruction::Sub ||
|
|
I->getOpcode() == Instruction::Mul ||
|
|
I->getOpcode() == Instruction::Shl;
|
|
}
|
|
static bool classof(const ConstantExpr *CE) {
|
|
return CE->getOpcode() == Instruction::Add ||
|
|
CE->getOpcode() == Instruction::Sub ||
|
|
CE->getOpcode() == Instruction::Mul ||
|
|
CE->getOpcode() == Instruction::Shl;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
/// A udiv or sdiv instruction, which can be marked as "exact",
|
|
/// indicating that no bits are destroyed.
|
|
class PossiblyExactOperator : public Operator {
|
|
public:
|
|
enum {
|
|
IsExact = (1 << 0)
|
|
};
|
|
|
|
private:
|
|
friend class Instruction;
|
|
friend class ConstantExpr;
|
|
|
|
void setIsExact(bool B) {
|
|
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
|
|
}
|
|
|
|
public:
|
|
/// Test whether this division is known to be exact, with zero remainder.
|
|
bool isExact() const {
|
|
return SubclassOptionalData & IsExact;
|
|
}
|
|
|
|
static bool isPossiblyExactOpcode(unsigned OpC) {
|
|
return OpC == Instruction::SDiv ||
|
|
OpC == Instruction::UDiv ||
|
|
OpC == Instruction::AShr ||
|
|
OpC == Instruction::LShr;
|
|
}
|
|
|
|
static bool classof(const ConstantExpr *CE) {
|
|
return isPossiblyExactOpcode(CE->getOpcode());
|
|
}
|
|
static bool classof(const Instruction *I) {
|
|
return isPossiblyExactOpcode(I->getOpcode());
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
/// Convenience struct for specifying and reasoning about fast-math flags.
|
|
class FastMathFlags {
|
|
private:
|
|
friend class FPMathOperator;
|
|
|
|
unsigned Flags = 0;
|
|
|
|
FastMathFlags(unsigned F) {
|
|
// If all 7 bits are set, turn this into -1. If the number of bits grows,
|
|
// this must be updated. This is intended to provide some forward binary
|
|
// compatibility insurance for the meaning of 'fast' in case bits are added.
|
|
if (F == 0x7F) Flags = ~0U;
|
|
else Flags = F;
|
|
}
|
|
|
|
public:
|
|
// This is how the bits are used in Value::SubclassOptionalData so they
|
|
// should fit there too.
|
|
// WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
|
|
// functionality will require a change in how this information is stored.
|
|
enum {
|
|
AllowReassoc = (1 << 0),
|
|
NoNaNs = (1 << 1),
|
|
NoInfs = (1 << 2),
|
|
NoSignedZeros = (1 << 3),
|
|
AllowReciprocal = (1 << 4),
|
|
AllowContract = (1 << 5),
|
|
ApproxFunc = (1 << 6)
|
|
};
|
|
|
|
FastMathFlags() = default;
|
|
|
|
static FastMathFlags getFast() {
|
|
FastMathFlags FMF;
|
|
FMF.setFast();
|
|
return FMF;
|
|
}
|
|
|
|
bool any() const { return Flags != 0; }
|
|
bool none() const { return Flags == 0; }
|
|
bool all() const { return Flags == ~0U; }
|
|
|
|
void clear() { Flags = 0; }
|
|
void set() { Flags = ~0U; }
|
|
|
|
/// Flag queries
|
|
bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
|
|
bool noNaNs() const { return 0 != (Flags & NoNaNs); }
|
|
bool noInfs() const { return 0 != (Flags & NoInfs); }
|
|
bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
|
|
bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
|
|
bool allowContract() const { return 0 != (Flags & AllowContract); }
|
|
bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
|
|
/// 'Fast' means all bits are set.
|
|
bool isFast() const { return all(); }
|
|
|
|
/// Flag setters
|
|
void setAllowReassoc(bool B = true) {
|
|
Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
|
|
}
|
|
void setNoNaNs(bool B = true) {
|
|
Flags = (Flags & ~NoNaNs) | B * NoNaNs;
|
|
}
|
|
void setNoInfs(bool B = true) {
|
|
Flags = (Flags & ~NoInfs) | B * NoInfs;
|
|
}
|
|
void setNoSignedZeros(bool B = true) {
|
|
Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
|
|
}
|
|
void setAllowReciprocal(bool B = true) {
|
|
Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
|
|
}
|
|
void setAllowContract(bool B = true) {
|
|
Flags = (Flags & ~AllowContract) | B * AllowContract;
|
|
}
|
|
void setApproxFunc(bool B = true) {
|
|
Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
|
|
}
|
|
void setFast(bool B = true) { B ? set() : clear(); }
|
|
|
|
void operator&=(const FastMathFlags &OtherFlags) {
|
|
Flags &= OtherFlags.Flags;
|
|
}
|
|
void operator|=(const FastMathFlags &OtherFlags) {
|
|
Flags |= OtherFlags.Flags;
|
|
}
|
|
};
|
|
|
|
/// Utility class for floating point operations which can have
|
|
/// information about relaxed accuracy requirements attached to them.
|
|
class FPMathOperator : public Operator {
|
|
private:
|
|
friend class Instruction;
|
|
|
|
/// 'Fast' means all bits are set.
|
|
void setFast(bool B) {
|
|
setHasAllowReassoc(B);
|
|
setHasNoNaNs(B);
|
|
setHasNoInfs(B);
|
|
setHasNoSignedZeros(B);
|
|
setHasAllowReciprocal(B);
|
|
setHasAllowContract(B);
|
|
setHasApproxFunc(B);
|
|
}
|
|
|
|
void setHasAllowReassoc(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
|
|
(B * FastMathFlags::AllowReassoc);
|
|
}
|
|
|
|
void setHasNoNaNs(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoNaNs) |
|
|
(B * FastMathFlags::NoNaNs);
|
|
}
|
|
|
|
void setHasNoInfs(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoInfs) |
|
|
(B * FastMathFlags::NoInfs);
|
|
}
|
|
|
|
void setHasNoSignedZeros(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
|
|
(B * FastMathFlags::NoSignedZeros);
|
|
}
|
|
|
|
void setHasAllowReciprocal(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
|
|
(B * FastMathFlags::AllowReciprocal);
|
|
}
|
|
|
|
void setHasAllowContract(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::AllowContract) |
|
|
(B * FastMathFlags::AllowContract);
|
|
}
|
|
|
|
void setHasApproxFunc(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
|
|
(B * FastMathFlags::ApproxFunc);
|
|
}
|
|
|
|
/// Convenience function for setting multiple fast-math flags.
|
|
/// FMF is a mask of the bits to set.
|
|
void setFastMathFlags(FastMathFlags FMF) {
|
|
SubclassOptionalData |= FMF.Flags;
|
|
}
|
|
|
|
/// Convenience function for copying all fast-math flags.
|
|
/// All values in FMF are transferred to this operator.
|
|
void copyFastMathFlags(FastMathFlags FMF) {
|
|
SubclassOptionalData = FMF.Flags;
|
|
}
|
|
|
|
public:
|
|
/// Test if this operation allows all non-strict floating-point transforms.
|
|
bool isFast() const {
|
|
return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
|
|
(SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
|
|
}
|
|
|
|
/// Test if this operation may be simplified with reassociative transforms.
|
|
bool hasAllowReassoc() const {
|
|
return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
|
|
}
|
|
|
|
/// Test if this operation's arguments and results are assumed not-NaN.
|
|
bool hasNoNaNs() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
|
|
}
|
|
|
|
/// Test if this operation's arguments and results are assumed not-infinite.
|
|
bool hasNoInfs() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
|
|
}
|
|
|
|
/// Test if this operation can ignore the sign of zero.
|
|
bool hasNoSignedZeros() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
|
|
}
|
|
|
|
/// Test if this operation can use reciprocal multiply instead of division.
|
|
bool hasAllowReciprocal() const {
|
|
return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
|
|
}
|
|
|
|
/// Test if this operation can be floating-point contracted (FMA).
|
|
bool hasAllowContract() const {
|
|
return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
|
|
}
|
|
|
|
/// Test if this operation allows approximations of math library functions or
|
|
/// intrinsics.
|
|
bool hasApproxFunc() const {
|
|
return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
|
|
}
|
|
|
|
/// Convenience function for getting all the fast-math flags
|
|
FastMathFlags getFastMathFlags() const {
|
|
return FastMathFlags(SubclassOptionalData);
|
|
}
|
|
|
|
/// Get the maximum error permitted by this operation in ULPs. An accuracy of
|
|
/// 0.0 means that the operation should be performed with the default
|
|
/// precision.
|
|
float getFPAccuracy() const;
|
|
|
|
static bool classof(const Value *V) {
|
|
unsigned Opcode;
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
Opcode = I->getOpcode();
|
|
else if (auto *CE = dyn_cast<ConstantExpr>(V))
|
|
Opcode = CE->getOpcode();
|
|
else
|
|
return false;
|
|
|
|
switch (Opcode) {
|
|
case Instruction::FNeg:
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
// FIXME: To clean up and correct the semantics of fast-math-flags, FCmp
|
|
// should not be treated as a math op, but the other opcodes should.
|
|
// This would make things consistent with Select/PHI (FP value type
|
|
// determines whether they are math ops and, therefore, capable of
|
|
// having fast-math-flags).
|
|
case Instruction::FCmp:
|
|
return true;
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
case Instruction::Call: {
|
|
Type *Ty = V->getType();
|
|
while (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty))
|
|
Ty = ArrTy->getElementType();
|
|
return Ty->isFPOrFPVectorTy();
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A helper template for defining operators for individual opcodes.
|
|
template<typename SuperClass, unsigned Opc>
|
|
class ConcreteOperator : public SuperClass {
|
|
public:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Opc;
|
|
}
|
|
static bool classof(const ConstantExpr *CE) {
|
|
return CE->getOpcode() == Opc;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
class AddOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
|
|
};
|
|
class SubOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
|
|
};
|
|
class MulOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
|
|
};
|
|
class ShlOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
|
|
};
|
|
|
|
class SDivOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
|
|
};
|
|
class UDivOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
|
|
};
|
|
class AShrOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
|
|
};
|
|
class LShrOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
|
|
};
|
|
|
|
class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
|
|
|
|
class GEPOperator
|
|
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
|
|
friend class GetElementPtrInst;
|
|
friend class ConstantExpr;
|
|
|
|
enum {
|
|
IsInBounds = (1 << 0),
|
|
// InRangeIndex: bits 1-6
|
|
};
|
|
|
|
void setIsInBounds(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
|
|
}
|
|
|
|
public:
|
|
/// Test whether this is an inbounds GEP, as defined by LangRef.html.
|
|
bool isInBounds() const {
|
|
return SubclassOptionalData & IsInBounds;
|
|
}
|
|
|
|
/// Returns the offset of the index with an inrange attachment, or None if
|
|
/// none.
|
|
Optional<unsigned> getInRangeIndex() const {
|
|
if (SubclassOptionalData >> 1 == 0) return None;
|
|
return (SubclassOptionalData >> 1) - 1;
|
|
}
|
|
|
|
inline op_iterator idx_begin() { return op_begin()+1; }
|
|
inline const_op_iterator idx_begin() const { return op_begin()+1; }
|
|
inline op_iterator idx_end() { return op_end(); }
|
|
inline const_op_iterator idx_end() const { return op_end(); }
|
|
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
/// Method to return the pointer operand as a PointerType.
|
|
Type *getPointerOperandType() const {
|
|
return getPointerOperand()->getType();
|
|
}
|
|
|
|
Type *getSourceElementType() const;
|
|
Type *getResultElementType() const;
|
|
|
|
/// Method to return the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperandType()->getPointerAddressSpace();
|
|
}
|
|
|
|
unsigned getNumIndices() const { // Note: always non-negative
|
|
return getNumOperands() - 1;
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return getNumOperands() > 1;
|
|
}
|
|
|
|
/// Return true if all of the indices of this GEP are zeros.
|
|
/// If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool hasAllZeroIndices() const {
|
|
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
|
|
if (C->isZero())
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return true if all of the indices of this GEP are constant integers.
|
|
/// If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool hasAllConstantIndices() const {
|
|
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
|
|
if (!isa<ConstantInt>(I))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned countNonConstantIndices() const {
|
|
return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
|
|
return !isa<ConstantInt>(*use);
|
|
});
|
|
}
|
|
|
|
/// Compute the maximum alignment that this GEP is garranteed to preserve.
|
|
Align getMaxPreservedAlignment(const DataLayout &DL) const;
|
|
|
|
/// Accumulate the constant address offset of this GEP if possible.
|
|
///
|
|
/// This routine accepts an APInt into which it will try to accumulate the
|
|
/// constant offset of this GEP.
|
|
///
|
|
/// If \p ExternalAnalysis is provided it will be used to calculate a offset
|
|
/// when a operand of GEP is not constant.
|
|
/// For example, for a value \p ExternalAnalysis might try to calculate a
|
|
/// lower bound. If \p ExternalAnalysis is successful, it should return true.
|
|
///
|
|
/// If the \p ExternalAnalysis returns false or the value returned by \p
|
|
/// ExternalAnalysis results in a overflow/underflow, this routine returns
|
|
/// false and the value of the offset APInt is undefined (it is *not*
|
|
/// preserved!).
|
|
///
|
|
/// The APInt passed into this routine must be at exactly as wide as the
|
|
/// IntPtr type for the address space of the base GEP pointer.
|
|
bool accumulateConstantOffset(
|
|
const DataLayout &DL, APInt &Offset,
|
|
function_ref<bool(Value &, APInt &)> ExternalAnalysis = nullptr) const;
|
|
|
|
static bool accumulateConstantOffset(
|
|
Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
|
|
APInt &Offset,
|
|
function_ref<bool(Value &, APInt &)> ExternalAnalysis = nullptr);
|
|
};
|
|
|
|
class PtrToIntOperator
|
|
: public ConcreteOperator<Operator, Instruction::PtrToInt> {
|
|
friend class PtrToInt;
|
|
friend class ConstantExpr;
|
|
|
|
public:
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
/// Method to return the pointer operand as a PointerType.
|
|
Type *getPointerOperandType() const {
|
|
return getPointerOperand()->getType();
|
|
}
|
|
|
|
/// Method to return the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return cast<PointerType>(getPointerOperandType())->getAddressSpace();
|
|
}
|
|
};
|
|
|
|
class BitCastOperator
|
|
: public ConcreteOperator<Operator, Instruction::BitCast> {
|
|
friend class BitCastInst;
|
|
friend class ConstantExpr;
|
|
|
|
public:
|
|
Type *getSrcTy() const {
|
|
return getOperand(0)->getType();
|
|
}
|
|
|
|
Type *getDestTy() const {
|
|
return getType();
|
|
}
|
|
};
|
|
|
|
class AddrSpaceCastOperator
|
|
: public ConcreteOperator<Operator, Instruction::AddrSpaceCast> {
|
|
friend class AddrSpaceCastInst;
|
|
friend class ConstantExpr;
|
|
|
|
public:
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
|
|
unsigned getSrcAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
unsigned getDestAddressSpace() const {
|
|
return getType()->getPointerAddressSpace();
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_OPERATOR_H
|