mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
1ed64614d6
Summary: NVPTXGenericToNVVM was using target-specific intrinsics to do address space casts. Using the addrspacecast instruction is (a lot) simpler. But it also has the advantage of being understandable to other passes. In particular, InferAddrSpaces is able to understand these address space casts and remove them in most cases. Reviewers: tra Subscribers: jholewinski, sanjoy, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D43914 llvm-svn: 326389
313 lines
12 KiB
C++
313 lines
12 KiB
C++
//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Convert generic global variables into either .global or .const access based
|
|
// on the variable's "constant" qualifier.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueMap.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
void initializeGenericToNVVMPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
class GenericToNVVM : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
GenericToNVVM() : ModulePass(ID) {}
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {}
|
|
|
|
private:
|
|
Value *remapConstant(Module *M, Function *F, Constant *C,
|
|
IRBuilder<> &Builder);
|
|
Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
|
|
Constant *C,
|
|
IRBuilder<> &Builder);
|
|
Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
|
|
IRBuilder<> &Builder);
|
|
|
|
typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
|
|
typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
|
|
GVMapTy GVMap;
|
|
ConstantToValueMapTy ConstantToValueMap;
|
|
};
|
|
} // end namespace
|
|
|
|
char GenericToNVVM::ID = 0;
|
|
|
|
ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
|
|
|
|
INITIALIZE_PASS(
|
|
GenericToNVVM, "generic-to-nvvm",
|
|
"Ensure that the global variables are in the global address space", false,
|
|
false)
|
|
|
|
bool GenericToNVVM::runOnModule(Module &M) {
|
|
// Create a clone of each global variable that has the default address space.
|
|
// The clone is created with the global address space specifier, and the pair
|
|
// of original global variable and its clone is placed in the GVMap for later
|
|
// use.
|
|
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E;) {
|
|
GlobalVariable *GV = &*I++;
|
|
if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
|
|
!llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
|
|
!llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
|
|
GlobalVariable *NewGV = new GlobalVariable(
|
|
M, GV->getValueType(), GV->isConstant(),
|
|
GV->getLinkage(),
|
|
GV->hasInitializer() ? GV->getInitializer() : nullptr,
|
|
"", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
|
|
NewGV->copyAttributesFrom(GV);
|
|
GVMap[GV] = NewGV;
|
|
}
|
|
}
|
|
|
|
// Return immediately, if every global variable has a specific address space
|
|
// specifier.
|
|
if (GVMap.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Walk through the instructions in function defitinions, and replace any use
|
|
// of original global variables in GVMap with a use of the corresponding
|
|
// copies in GVMap. If necessary, promote constants to instructions.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
if (I->isDeclaration()) {
|
|
continue;
|
|
}
|
|
IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
|
|
for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
|
|
++BBI) {
|
|
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
|
|
++II) {
|
|
for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
|
|
Value *Operand = II->getOperand(i);
|
|
if (isa<Constant>(Operand)) {
|
|
II->setOperand(
|
|
i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ConstantToValueMap.clear();
|
|
}
|
|
|
|
// Copy GVMap over to a standard value map.
|
|
ValueToValueMapTy VM;
|
|
for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
|
|
VM[I->first] = I->second;
|
|
|
|
// Walk through the global variable initializers, and replace any use of
|
|
// original global variables in GVMap with a use of the corresponding copies
|
|
// in GVMap. The copies need to be bitcast to the original global variable
|
|
// types, as we cannot use cvta in global variable initializers.
|
|
for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
|
|
GlobalVariable *GV = I->first;
|
|
GlobalVariable *NewGV = I->second;
|
|
|
|
// Remove GV from the map so that it can be RAUWed. Note that
|
|
// DenseMap::erase() won't invalidate any iterators but this one.
|
|
auto Next = std::next(I);
|
|
GVMap.erase(I);
|
|
I = Next;
|
|
|
|
Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
|
|
// At this point, the remaining uses of GV should be found only in global
|
|
// variable initializers, as other uses have been already been removed
|
|
// while walking through the instructions in function definitions.
|
|
GV->replaceAllUsesWith(BitCastNewGV);
|
|
std::string Name = GV->getName();
|
|
GV->eraseFromParent();
|
|
NewGV->setName(Name);
|
|
}
|
|
assert(GVMap.empty() && "Expected it to be empty by now");
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
|
|
IRBuilder<> &Builder) {
|
|
// If the constant C has been converted already in the given function F, just
|
|
// return the converted value.
|
|
ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
|
|
if (CTII != ConstantToValueMap.end()) {
|
|
return CTII->second;
|
|
}
|
|
|
|
Value *NewValue = C;
|
|
if (isa<GlobalVariable>(C)) {
|
|
// If the constant C is a global variable and is found in GVMap, substitute
|
|
//
|
|
// addrspacecast GVMap[C] to addrspace(0)
|
|
//
|
|
// for our use of C.
|
|
GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
|
|
if (I != GVMap.end()) {
|
|
GlobalVariable *GV = I->second;
|
|
NewValue = Builder.CreateAddrSpaceCast(
|
|
GV,
|
|
PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC));
|
|
}
|
|
} else if (isa<ConstantAggregate>(C)) {
|
|
// If any element in the constant vector or aggregate C is or uses a global
|
|
// variable in GVMap, the constant C needs to be reconstructed, using a set
|
|
// of instructions.
|
|
NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
|
|
} else if (isa<ConstantExpr>(C)) {
|
|
// If any operand in the constant expression C is or uses a global variable
|
|
// in GVMap, the constant expression C needs to be reconstructed, using a
|
|
// set of instructions.
|
|
NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
|
|
}
|
|
|
|
ConstantToValueMap[C] = NewValue;
|
|
return NewValue;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
|
|
Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
|
|
bool OperandChanged = false;
|
|
SmallVector<Value *, 4> NewOperands;
|
|
unsigned NumOperands = C->getNumOperands();
|
|
|
|
// Check if any element is or uses a global variable in GVMap, and thus
|
|
// converted to another value.
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Operand = C->getOperand(i);
|
|
Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
|
|
OperandChanged |= Operand != NewOperand;
|
|
NewOperands.push_back(NewOperand);
|
|
}
|
|
|
|
// If none of the elements has been modified, return C as it is.
|
|
if (!OperandChanged) {
|
|
return C;
|
|
}
|
|
|
|
// If any of the elements has been modified, construct the equivalent
|
|
// vector or aggregate value with a set instructions and the converted
|
|
// elements.
|
|
Value *NewValue = UndefValue::get(C->getType());
|
|
if (isa<ConstantVector>(C)) {
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
|
|
NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
NewValue =
|
|
Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
|
|
}
|
|
}
|
|
|
|
return NewValue;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
|
|
IRBuilder<> &Builder) {
|
|
bool OperandChanged = false;
|
|
SmallVector<Value *, 4> NewOperands;
|
|
unsigned NumOperands = C->getNumOperands();
|
|
|
|
// Check if any operand is or uses a global variable in GVMap, and thus
|
|
// converted to another value.
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Operand = C->getOperand(i);
|
|
Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
|
|
OperandChanged |= Operand != NewOperand;
|
|
NewOperands.push_back(NewOperand);
|
|
}
|
|
|
|
// If none of the operands has been modified, return C as it is.
|
|
if (!OperandChanged) {
|
|
return C;
|
|
}
|
|
|
|
// If any of the operands has been modified, construct the instruction with
|
|
// the converted operands.
|
|
unsigned Opcode = C->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::ICmp:
|
|
// CompareConstantExpr (icmp)
|
|
return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
|
|
NewOperands[0], NewOperands[1]);
|
|
case Instruction::FCmp:
|
|
// CompareConstantExpr (fcmp)
|
|
llvm_unreachable("Address space conversion should have no effect "
|
|
"on float point CompareConstantExpr (fcmp)!");
|
|
case Instruction::ExtractElement:
|
|
// ExtractElementConstantExpr
|
|
return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
|
|
case Instruction::InsertElement:
|
|
// InsertElementConstantExpr
|
|
return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
|
|
NewOperands[2]);
|
|
case Instruction::ShuffleVector:
|
|
// ShuffleVector
|
|
return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
|
|
NewOperands[2]);
|
|
case Instruction::ExtractValue:
|
|
// ExtractValueConstantExpr
|
|
return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
|
|
case Instruction::InsertValue:
|
|
// InsertValueConstantExpr
|
|
return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
|
|
C->getIndices());
|
|
case Instruction::GetElementPtr:
|
|
// GetElementPtrConstantExpr
|
|
return cast<GEPOperator>(C)->isInBounds()
|
|
? Builder.CreateGEP(
|
|
cast<GEPOperator>(C)->getSourceElementType(),
|
|
NewOperands[0],
|
|
makeArrayRef(&NewOperands[1], NumOperands - 1))
|
|
: Builder.CreateInBoundsGEP(
|
|
cast<GEPOperator>(C)->getSourceElementType(),
|
|
NewOperands[0],
|
|
makeArrayRef(&NewOperands[1], NumOperands - 1));
|
|
case Instruction::Select:
|
|
// SelectConstantExpr
|
|
return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
|
|
default:
|
|
// BinaryConstantExpr
|
|
if (Instruction::isBinaryOp(Opcode)) {
|
|
return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
|
|
NewOperands[0], NewOperands[1]);
|
|
}
|
|
// UnaryConstantExpr
|
|
if (Instruction::isCast(Opcode)) {
|
|
return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
|
|
NewOperands[0], C->getType());
|
|
}
|
|
llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
|
|
}
|
|
}
|