1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/examples/ParallelJIT/ParallelJIT.cpp
Serge Guelton 6ca59da244 Module::getOrInsertFunction is using C-style vararg instead of variadic templates.
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.

Differential Revision: https://reviews.llvm.org/D31070

llvm-svn: 299949
2017-04-11 15:01:18 +00:00

325 lines
10 KiB
C++

//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Parallel JIT
//
// This test program creates two LLVM functions then calls them from three
// separate threads. It requires the pthreads library.
// The three threads are created and then block waiting on a condition variable.
// Once all threads are blocked on the conditional variable, the main thread
// wakes them up. This complicated work is performed so that all three threads
// call into the JIT at the same time (or the best possible approximation of the
// same time). This test had assertion errors until I got the locking right.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/TargetSelect.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <memory>
#include <vector>
#include <pthread.h>
using namespace llvm;
static Function* createAdd1(Module *M) {
// Create the add1 function entry and insert this entry into module M. The
// function will have a return type of "int" and take an argument of "int".
// The '0' terminates the list of argument types.
Function *Add1F =
cast<Function>(M->getOrInsertFunction("add1",
Type::getInt32Ty(M->getContext()),
Type::getInt32Ty(M->getContext())));
// Add a basic block to the function. As before, it automatically inserts
// because of the last argument.
BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
// Get pointers to the constant `1'.
Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
Argument *ArgX = &*Add1F->arg_begin(); // Get the arg
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the add instruction, inserting it into the end of BB.
Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
// Create the return instruction and add it to the basic block
ReturnInst::Create(M->getContext(), Add, BB);
// Now, function add1 is ready.
return Add1F;
}
static Function *CreateFibFunction(Module *M) {
// Create the fib function and insert it into module M. This function is said
// to return an int and take an int parameter.
Function *FibF =
cast<Function>(M->getOrInsertFunction("fib",
Type::getInt32Ty(M->getContext()),
Type::getInt32Ty(M->getContext())));
// Add a basic block to the function.
BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
// Get pointers to the constants.
Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
// Get pointer to the integer argument of the add1 function...
Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the true_block.
BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
// Create an exit block.
BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
// Create the "if (arg < 2) goto exitbb"
Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
// Create: ret int 1
ReturnInst::Create(M->getContext(), One, RetBB);
// create fib(x-1)
Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
// create fib(x-2)
Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
// fib(x-1)+fib(x-2)
Value *Sum =
BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
// Create the return instruction and add it to the basic block
ReturnInst::Create(M->getContext(), Sum, RecurseBB);
return FibF;
}
struct threadParams {
ExecutionEngine* EE;
Function* F;
int value;
};
// We block the subthreads just before they begin to execute:
// we want all of them to call into the JIT at the same time,
// to verify that the locking is working correctly.
class WaitForThreads
{
public:
WaitForThreads()
{
n = 0;
waitFor = 0;
int result = pthread_cond_init( &condition, nullptr );
assert( result == 0 );
result = pthread_mutex_init( &mutex, nullptr );
assert( result == 0 );
}
~WaitForThreads()
{
int result = pthread_cond_destroy( &condition );
(void)result;
assert( result == 0 );
result = pthread_mutex_destroy( &mutex );
assert( result == 0 );
}
// All threads will stop here until another thread calls releaseThreads
void block()
{
int result = pthread_mutex_lock( &mutex );
(void)result;
assert( result == 0 );
n ++;
//~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
assert( waitFor == 0 || n <= waitFor );
if ( waitFor > 0 && n == waitFor )
{
// There are enough threads blocked that we can release all of them
std::cout << "Unblocking threads from block()" << std::endl;
unblockThreads();
}
else
{
// We just need to wait until someone unblocks us
result = pthread_cond_wait( &condition, &mutex );
assert( result == 0 );
}
// unlock the mutex before returning
result = pthread_mutex_unlock( &mutex );
assert( result == 0 );
}
// If there are num or more threads blocked, it will signal them all
// Otherwise, this thread blocks until there are enough OTHER threads
// blocked
void releaseThreads( size_t num )
{
int result = pthread_mutex_lock( &mutex );
(void)result;
assert( result == 0 );
if ( n >= num ) {
std::cout << "Unblocking threads from releaseThreads()" << std::endl;
unblockThreads();
}
else
{
waitFor = num;
pthread_cond_wait( &condition, &mutex );
}
// unlock the mutex before returning
result = pthread_mutex_unlock( &mutex );
assert( result == 0 );
}
private:
void unblockThreads()
{
// Reset the counters to zero: this way, if any new threads
// enter while threads are exiting, they will block instead
// of triggering a new release of threads
n = 0;
// Reset waitFor to zero: this way, if waitFor threads enter
// while threads are exiting, they will block instead of
// triggering a new release of threads
waitFor = 0;
int result = pthread_cond_broadcast( &condition );
(void)result;
assert(result == 0);
}
size_t n;
size_t waitFor;
pthread_cond_t condition;
pthread_mutex_t mutex;
};
static WaitForThreads synchronize;
void* callFunc( void* param )
{
struct threadParams* p = (struct threadParams*) param;
// Call the `foo' function with no arguments:
std::vector<GenericValue> Args(1);
Args[0].IntVal = APInt(32, p->value);
synchronize.block(); // wait until other threads are at this point
GenericValue gv = p->EE->runFunction(p->F, Args);
return (void*)(intptr_t)gv.IntVal.getZExtValue();
}
int main() {
InitializeNativeTarget();
LLVMContext Context;
// Create some module to put our function into it.
std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
Module *M = Owner.get();
Function* add1F = createAdd1( M );
Function* fibF = CreateFibFunction( M );
// Now we create the JIT.
ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
//~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
//~ std::cout << "\n\nRunning foo: " << std::flush;
// Create one thread for add1 and two threads for fib
struct threadParams add1 = { EE, add1F, 1000 };
struct threadParams fib1 = { EE, fibF, 39 };
struct threadParams fib2 = { EE, fibF, 42 };
pthread_t add1Thread;
int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
if ( result != 0 ) {
std::cerr << "Could not create thread" << std::endl;
return 1;
}
pthread_t fibThread1;
result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
if ( result != 0 ) {
std::cerr << "Could not create thread" << std::endl;
return 1;
}
pthread_t fibThread2;
result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
if ( result != 0 ) {
std::cerr << "Could not create thread" << std::endl;
return 1;
}
synchronize.releaseThreads(3); // wait until other threads are at this point
void* returnValue;
result = pthread_join( add1Thread, &returnValue );
if ( result != 0 ) {
std::cerr << "Could not join thread" << std::endl;
return 1;
}
std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
result = pthread_join( fibThread1, &returnValue );
if ( result != 0 ) {
std::cerr << "Could not join thread" << std::endl;
return 1;
}
std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
result = pthread_join( fibThread2, &returnValue );
if ( result != 0 ) {
std::cerr << "Could not join thread" << std::endl;
return 1;
}
std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
return 0;
}