mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
7fbb587058
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen. I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder. Reviewed By: wenlei Differential Revision: https://reviews.llvm.org/D104477
1254 lines
51 KiB
C++
1254 lines
51 KiB
C++
//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Collect the sequence of machine instructions for a basic block.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
|
|
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
|
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class BasicBlock;
|
|
class MachineFunction;
|
|
class MCSymbol;
|
|
class ModuleSlotTracker;
|
|
class Pass;
|
|
class Printable;
|
|
class SlotIndexes;
|
|
class StringRef;
|
|
class raw_ostream;
|
|
class LiveIntervals;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
|
|
// This structure uniquely identifies a basic block section.
|
|
// Possible values are
|
|
// {Type: Default, Number: (unsigned)} (These are regular section IDs)
|
|
// {Type: Exception, Number: 0} (ExceptionSectionID)
|
|
// {Type: Cold, Number: 0} (ColdSectionID)
|
|
struct MBBSectionID {
|
|
enum SectionType {
|
|
Default = 0, // Regular section (these sections are distinguished by the
|
|
// Number field).
|
|
Exception, // Special section type for exception handling blocks
|
|
Cold, // Special section type for cold blocks
|
|
} Type;
|
|
unsigned Number;
|
|
|
|
MBBSectionID(unsigned N) : Type(Default), Number(N) {}
|
|
|
|
// Special unique sections for cold and exception blocks.
|
|
const static MBBSectionID ColdSectionID;
|
|
const static MBBSectionID ExceptionSectionID;
|
|
|
|
bool operator==(const MBBSectionID &Other) const {
|
|
return Type == Other.Type && Number == Other.Number;
|
|
}
|
|
|
|
bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
|
|
|
|
private:
|
|
// This is only used to construct the special cold and exception sections.
|
|
MBBSectionID(SectionType T) : Type(T), Number(0) {}
|
|
};
|
|
|
|
template <> struct ilist_traits<MachineInstr> {
|
|
private:
|
|
friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
|
|
|
|
MachineBasicBlock *Parent;
|
|
|
|
using instr_iterator =
|
|
simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
|
|
|
|
public:
|
|
void addNodeToList(MachineInstr *N);
|
|
void removeNodeFromList(MachineInstr *N);
|
|
void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
|
|
instr_iterator Last);
|
|
void deleteNode(MachineInstr *MI);
|
|
};
|
|
|
|
class MachineBasicBlock
|
|
: public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
|
|
public:
|
|
/// Pair of physical register and lane mask.
|
|
/// This is not simply a std::pair typedef because the members should be named
|
|
/// clearly as they both have an integer type.
|
|
struct RegisterMaskPair {
|
|
public:
|
|
MCPhysReg PhysReg;
|
|
LaneBitmask LaneMask;
|
|
|
|
RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
|
|
: PhysReg(PhysReg), LaneMask(LaneMask) {}
|
|
};
|
|
|
|
private:
|
|
using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
|
|
|
|
Instructions Insts;
|
|
const BasicBlock *BB;
|
|
int Number;
|
|
MachineFunction *xParent;
|
|
|
|
/// Keep track of the predecessor / successor basic blocks.
|
|
std::vector<MachineBasicBlock *> Predecessors;
|
|
std::vector<MachineBasicBlock *> Successors;
|
|
|
|
/// Keep track of the probabilities to the successors. This vector has the
|
|
/// same order as Successors, or it is empty if we don't use it (disable
|
|
/// optimization).
|
|
std::vector<BranchProbability> Probs;
|
|
using probability_iterator = std::vector<BranchProbability>::iterator;
|
|
using const_probability_iterator =
|
|
std::vector<BranchProbability>::const_iterator;
|
|
|
|
Optional<uint64_t> IrrLoopHeaderWeight;
|
|
|
|
/// Keep track of the physical registers that are livein of the basicblock.
|
|
using LiveInVector = std::vector<RegisterMaskPair>;
|
|
LiveInVector LiveIns;
|
|
|
|
/// Alignment of the basic block. One if the basic block does not need to be
|
|
/// aligned.
|
|
Align Alignment;
|
|
|
|
/// Indicate that this basic block is entered via an exception handler.
|
|
bool IsEHPad = false;
|
|
|
|
/// Indicate that this basic block is potentially the target of an indirect
|
|
/// branch.
|
|
bool AddressTaken = false;
|
|
|
|
/// Indicate that this basic block needs its symbol be emitted regardless of
|
|
/// whether the flow just falls-through to it.
|
|
bool LabelMustBeEmitted = false;
|
|
|
|
/// Indicate that this basic block is the entry block of an EH scope, i.e.,
|
|
/// the block that used to have a catchpad or cleanuppad instruction in the
|
|
/// LLVM IR.
|
|
bool IsEHScopeEntry = false;
|
|
|
|
/// Indicates if this is a target block of a catchret.
|
|
bool IsEHCatchretTarget = false;
|
|
|
|
/// Indicate that this basic block is the entry block of an EH funclet.
|
|
bool IsEHFuncletEntry = false;
|
|
|
|
/// Indicate that this basic block is the entry block of a cleanup funclet.
|
|
bool IsCleanupFuncletEntry = false;
|
|
|
|
/// With basic block sections, this stores the Section ID of the basic block.
|
|
MBBSectionID SectionID{0};
|
|
|
|
// Indicate that this basic block begins a section.
|
|
bool IsBeginSection = false;
|
|
|
|
// Indicate that this basic block ends a section.
|
|
bool IsEndSection = false;
|
|
|
|
/// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
|
|
bool IsInlineAsmBrIndirectTarget = false;
|
|
|
|
/// since getSymbol is a relatively heavy-weight operation, the symbol
|
|
/// is only computed once and is cached.
|
|
mutable MCSymbol *CachedMCSymbol = nullptr;
|
|
|
|
/// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
|
|
mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
|
|
|
|
/// Marks the end of the basic block. Used during basic block sections to
|
|
/// calculate the size of the basic block, or the BB section ending with it.
|
|
mutable MCSymbol *CachedEndMCSymbol = nullptr;
|
|
|
|
// Intrusive list support
|
|
MachineBasicBlock() = default;
|
|
|
|
explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
|
|
|
|
~MachineBasicBlock();
|
|
|
|
// MachineBasicBlocks are allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
public:
|
|
/// Return the LLVM basic block that this instance corresponded to originally.
|
|
/// Note that this may be NULL if this instance does not correspond directly
|
|
/// to an LLVM basic block.
|
|
const BasicBlock *getBasicBlock() const { return BB; }
|
|
|
|
/// Return the name of the corresponding LLVM basic block, or an empty string.
|
|
StringRef getName() const;
|
|
|
|
/// Return a formatted string to identify this block and its parent function.
|
|
std::string getFullName() const;
|
|
|
|
/// Test whether this block is potentially the target of an indirect branch.
|
|
bool hasAddressTaken() const { return AddressTaken; }
|
|
|
|
/// Set this block to reflect that it potentially is the target of an indirect
|
|
/// branch.
|
|
void setHasAddressTaken() { AddressTaken = true; }
|
|
|
|
/// Test whether this block must have its label emitted.
|
|
bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
|
|
|
|
/// Set this block to reflect that, regardless how we flow to it, we need
|
|
/// its label be emitted.
|
|
void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
|
|
|
|
/// Return the MachineFunction containing this basic block.
|
|
const MachineFunction *getParent() const { return xParent; }
|
|
MachineFunction *getParent() { return xParent; }
|
|
|
|
using instr_iterator = Instructions::iterator;
|
|
using const_instr_iterator = Instructions::const_iterator;
|
|
using reverse_instr_iterator = Instructions::reverse_iterator;
|
|
using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
|
|
|
|
using iterator = MachineInstrBundleIterator<MachineInstr>;
|
|
using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
|
|
using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
|
|
using const_reverse_iterator =
|
|
MachineInstrBundleIterator<const MachineInstr, true>;
|
|
|
|
unsigned size() const { return (unsigned)Insts.size(); }
|
|
bool empty() const { return Insts.empty(); }
|
|
|
|
MachineInstr &instr_front() { return Insts.front(); }
|
|
MachineInstr &instr_back() { return Insts.back(); }
|
|
const MachineInstr &instr_front() const { return Insts.front(); }
|
|
const MachineInstr &instr_back() const { return Insts.back(); }
|
|
|
|
MachineInstr &front() { return Insts.front(); }
|
|
MachineInstr &back() { return *--end(); }
|
|
const MachineInstr &front() const { return Insts.front(); }
|
|
const MachineInstr &back() const { return *--end(); }
|
|
|
|
instr_iterator instr_begin() { return Insts.begin(); }
|
|
const_instr_iterator instr_begin() const { return Insts.begin(); }
|
|
instr_iterator instr_end() { return Insts.end(); }
|
|
const_instr_iterator instr_end() const { return Insts.end(); }
|
|
reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); }
|
|
const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
|
|
reverse_instr_iterator instr_rend () { return Insts.rend(); }
|
|
const_reverse_instr_iterator instr_rend () const { return Insts.rend(); }
|
|
|
|
using instr_range = iterator_range<instr_iterator>;
|
|
using const_instr_range = iterator_range<const_instr_iterator>;
|
|
instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
|
|
const_instr_range instrs() const {
|
|
return const_instr_range(instr_begin(), instr_end());
|
|
}
|
|
|
|
iterator begin() { return instr_begin(); }
|
|
const_iterator begin() const { return instr_begin(); }
|
|
iterator end () { return instr_end(); }
|
|
const_iterator end () const { return instr_end(); }
|
|
reverse_iterator rbegin() {
|
|
return reverse_iterator::getAtBundleBegin(instr_rbegin());
|
|
}
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
|
|
}
|
|
reverse_iterator rend() { return reverse_iterator(instr_rend()); }
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(instr_rend());
|
|
}
|
|
|
|
/// Support for MachineInstr::getNextNode().
|
|
static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
|
|
return &MachineBasicBlock::Insts;
|
|
}
|
|
|
|
inline iterator_range<iterator> terminators() {
|
|
return make_range(getFirstTerminator(), end());
|
|
}
|
|
inline iterator_range<const_iterator> terminators() const {
|
|
return make_range(getFirstTerminator(), end());
|
|
}
|
|
|
|
/// Returns a range that iterates over the phis in the basic block.
|
|
inline iterator_range<iterator> phis() {
|
|
return make_range(begin(), getFirstNonPHI());
|
|
}
|
|
inline iterator_range<const_iterator> phis() const {
|
|
return const_cast<MachineBasicBlock *>(this)->phis();
|
|
}
|
|
|
|
// Machine-CFG iterators
|
|
using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
|
|
using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
|
|
using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
|
|
using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
|
|
using pred_reverse_iterator =
|
|
std::vector<MachineBasicBlock *>::reverse_iterator;
|
|
using const_pred_reverse_iterator =
|
|
std::vector<MachineBasicBlock *>::const_reverse_iterator;
|
|
using succ_reverse_iterator =
|
|
std::vector<MachineBasicBlock *>::reverse_iterator;
|
|
using const_succ_reverse_iterator =
|
|
std::vector<MachineBasicBlock *>::const_reverse_iterator;
|
|
pred_iterator pred_begin() { return Predecessors.begin(); }
|
|
const_pred_iterator pred_begin() const { return Predecessors.begin(); }
|
|
pred_iterator pred_end() { return Predecessors.end(); }
|
|
const_pred_iterator pred_end() const { return Predecessors.end(); }
|
|
pred_reverse_iterator pred_rbegin()
|
|
{ return Predecessors.rbegin();}
|
|
const_pred_reverse_iterator pred_rbegin() const
|
|
{ return Predecessors.rbegin();}
|
|
pred_reverse_iterator pred_rend()
|
|
{ return Predecessors.rend(); }
|
|
const_pred_reverse_iterator pred_rend() const
|
|
{ return Predecessors.rend(); }
|
|
unsigned pred_size() const {
|
|
return (unsigned)Predecessors.size();
|
|
}
|
|
bool pred_empty() const { return Predecessors.empty(); }
|
|
succ_iterator succ_begin() { return Successors.begin(); }
|
|
const_succ_iterator succ_begin() const { return Successors.begin(); }
|
|
succ_iterator succ_end() { return Successors.end(); }
|
|
const_succ_iterator succ_end() const { return Successors.end(); }
|
|
succ_reverse_iterator succ_rbegin()
|
|
{ return Successors.rbegin(); }
|
|
const_succ_reverse_iterator succ_rbegin() const
|
|
{ return Successors.rbegin(); }
|
|
succ_reverse_iterator succ_rend()
|
|
{ return Successors.rend(); }
|
|
const_succ_reverse_iterator succ_rend() const
|
|
{ return Successors.rend(); }
|
|
unsigned succ_size() const {
|
|
return (unsigned)Successors.size();
|
|
}
|
|
bool succ_empty() const { return Successors.empty(); }
|
|
|
|
inline iterator_range<pred_iterator> predecessors() {
|
|
return make_range(pred_begin(), pred_end());
|
|
}
|
|
inline iterator_range<const_pred_iterator> predecessors() const {
|
|
return make_range(pred_begin(), pred_end());
|
|
}
|
|
inline iterator_range<succ_iterator> successors() {
|
|
return make_range(succ_begin(), succ_end());
|
|
}
|
|
inline iterator_range<const_succ_iterator> successors() const {
|
|
return make_range(succ_begin(), succ_end());
|
|
}
|
|
|
|
// LiveIn management methods.
|
|
|
|
/// Adds the specified register as a live in. Note that it is an error to add
|
|
/// the same register to the same set more than once unless the intention is
|
|
/// to call sortUniqueLiveIns after all registers are added.
|
|
void addLiveIn(MCRegister PhysReg,
|
|
LaneBitmask LaneMask = LaneBitmask::getAll()) {
|
|
LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
|
|
}
|
|
void addLiveIn(const RegisterMaskPair &RegMaskPair) {
|
|
LiveIns.push_back(RegMaskPair);
|
|
}
|
|
|
|
/// Sorts and uniques the LiveIns vector. It can be significantly faster to do
|
|
/// this than repeatedly calling isLiveIn before calling addLiveIn for every
|
|
/// LiveIn insertion.
|
|
void sortUniqueLiveIns();
|
|
|
|
/// Clear live in list.
|
|
void clearLiveIns();
|
|
|
|
/// Add PhysReg as live in to this block, and ensure that there is a copy of
|
|
/// PhysReg to a virtual register of class RC. Return the virtual register
|
|
/// that is a copy of the live in PhysReg.
|
|
Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
|
|
|
|
/// Remove the specified register from the live in set.
|
|
void removeLiveIn(MCPhysReg Reg,
|
|
LaneBitmask LaneMask = LaneBitmask::getAll());
|
|
|
|
/// Return true if the specified register is in the live in set.
|
|
bool isLiveIn(MCPhysReg Reg,
|
|
LaneBitmask LaneMask = LaneBitmask::getAll()) const;
|
|
|
|
// Iteration support for live in sets. These sets are kept in sorted
|
|
// order by their register number.
|
|
using livein_iterator = LiveInVector::const_iterator;
|
|
#ifndef NDEBUG
|
|
/// Unlike livein_begin, this method does not check that the liveness
|
|
/// information is accurate. Still for debug purposes it may be useful
|
|
/// to have iterators that won't assert if the liveness information
|
|
/// is not current.
|
|
livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
|
|
iterator_range<livein_iterator> liveins_dbg() const {
|
|
return make_range(livein_begin_dbg(), livein_end());
|
|
}
|
|
#endif
|
|
livein_iterator livein_begin() const;
|
|
livein_iterator livein_end() const { return LiveIns.end(); }
|
|
bool livein_empty() const { return LiveIns.empty(); }
|
|
iterator_range<livein_iterator> liveins() const {
|
|
return make_range(livein_begin(), livein_end());
|
|
}
|
|
|
|
/// Remove entry from the livein set and return iterator to the next.
|
|
livein_iterator removeLiveIn(livein_iterator I);
|
|
|
|
class liveout_iterator {
|
|
public:
|
|
using iterator_category = std::input_iterator_tag;
|
|
using difference_type = std::ptrdiff_t;
|
|
using value_type = RegisterMaskPair;
|
|
using pointer = const RegisterMaskPair *;
|
|
using reference = const RegisterMaskPair &;
|
|
|
|
liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
|
|
MCPhysReg ExceptionSelector, bool End)
|
|
: ExceptionPointer(ExceptionPointer),
|
|
ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
|
|
BlockEnd(MBB.succ_end()) {
|
|
if (End)
|
|
BlockI = BlockEnd;
|
|
else if (BlockI != BlockEnd) {
|
|
LiveRegI = (*BlockI)->livein_begin();
|
|
if (!advanceToValidPosition())
|
|
return;
|
|
if (LiveRegI->PhysReg == ExceptionPointer ||
|
|
LiveRegI->PhysReg == ExceptionSelector)
|
|
++(*this);
|
|
}
|
|
}
|
|
|
|
liveout_iterator &operator++() {
|
|
do {
|
|
++LiveRegI;
|
|
if (!advanceToValidPosition())
|
|
return *this;
|
|
} while ((*BlockI)->isEHPad() &&
|
|
(LiveRegI->PhysReg == ExceptionPointer ||
|
|
LiveRegI->PhysReg == ExceptionSelector));
|
|
return *this;
|
|
}
|
|
|
|
liveout_iterator operator++(int) {
|
|
liveout_iterator Tmp = *this;
|
|
++(*this);
|
|
return Tmp;
|
|
}
|
|
|
|
reference operator*() const {
|
|
return *LiveRegI;
|
|
}
|
|
|
|
pointer operator->() const {
|
|
return &*LiveRegI;
|
|
}
|
|
|
|
bool operator==(const liveout_iterator &RHS) const {
|
|
if (BlockI != BlockEnd)
|
|
return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
|
|
return RHS.BlockI == BlockEnd;
|
|
}
|
|
|
|
bool operator!=(const liveout_iterator &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
private:
|
|
bool advanceToValidPosition() {
|
|
if (LiveRegI != (*BlockI)->livein_end())
|
|
return true;
|
|
|
|
do {
|
|
++BlockI;
|
|
} while (BlockI != BlockEnd && (*BlockI)->livein_empty());
|
|
if (BlockI == BlockEnd)
|
|
return false;
|
|
|
|
LiveRegI = (*BlockI)->livein_begin();
|
|
return true;
|
|
}
|
|
|
|
MCPhysReg ExceptionPointer, ExceptionSelector;
|
|
const_succ_iterator BlockI;
|
|
const_succ_iterator BlockEnd;
|
|
livein_iterator LiveRegI;
|
|
};
|
|
|
|
/// Iterator scanning successor basic blocks' liveins to determine the
|
|
/// registers potentially live at the end of this block. There may be
|
|
/// duplicates or overlapping registers in the list returned.
|
|
liveout_iterator liveout_begin() const;
|
|
liveout_iterator liveout_end() const {
|
|
return liveout_iterator(*this, 0, 0, true);
|
|
}
|
|
iterator_range<liveout_iterator> liveouts() const {
|
|
return make_range(liveout_begin(), liveout_end());
|
|
}
|
|
|
|
/// Get the clobber mask for the start of this basic block. Funclets use this
|
|
/// to prevent register allocation across funclet transitions.
|
|
const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Get the clobber mask for the end of the basic block.
|
|
/// \see getBeginClobberMask()
|
|
const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Return alignment of the basic block.
|
|
Align getAlignment() const { return Alignment; }
|
|
|
|
/// Set alignment of the basic block.
|
|
void setAlignment(Align A) { Alignment = A; }
|
|
|
|
/// Returns true if the block is a landing pad. That is this basic block is
|
|
/// entered via an exception handler.
|
|
bool isEHPad() const { return IsEHPad; }
|
|
|
|
/// Indicates the block is a landing pad. That is this basic block is entered
|
|
/// via an exception handler.
|
|
void setIsEHPad(bool V = true) { IsEHPad = V; }
|
|
|
|
bool hasEHPadSuccessor() const;
|
|
|
|
/// Returns true if this is the entry block of the function.
|
|
bool isEntryBlock() const;
|
|
|
|
/// Returns true if this is the entry block of an EH scope, i.e., the block
|
|
/// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
|
|
bool isEHScopeEntry() const { return IsEHScopeEntry; }
|
|
|
|
/// Indicates if this is the entry block of an EH scope, i.e., the block that
|
|
/// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
|
|
void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
|
|
|
|
/// Returns true if this is a target block of a catchret.
|
|
bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
|
|
|
|
/// Indicates if this is a target block of a catchret.
|
|
void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
|
|
|
|
/// Returns true if this is the entry block of an EH funclet.
|
|
bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
|
|
|
|
/// Indicates if this is the entry block of an EH funclet.
|
|
void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
|
|
|
|
/// Returns true if this is the entry block of a cleanup funclet.
|
|
bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
|
|
|
|
/// Indicates if this is the entry block of a cleanup funclet.
|
|
void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
|
|
|
|
/// Returns true if this block begins any section.
|
|
bool isBeginSection() const { return IsBeginSection; }
|
|
|
|
/// Returns true if this block ends any section.
|
|
bool isEndSection() const { return IsEndSection; }
|
|
|
|
void setIsBeginSection(bool V = true) { IsBeginSection = V; }
|
|
|
|
void setIsEndSection(bool V = true) { IsEndSection = V; }
|
|
|
|
/// Returns the section ID of this basic block.
|
|
MBBSectionID getSectionID() const { return SectionID; }
|
|
|
|
/// Returns the unique section ID number of this basic block.
|
|
unsigned getSectionIDNum() const {
|
|
return ((unsigned)MBBSectionID::SectionType::Cold) -
|
|
((unsigned)SectionID.Type) + SectionID.Number;
|
|
}
|
|
|
|
/// Sets the section ID for this basic block.
|
|
void setSectionID(MBBSectionID V) { SectionID = V; }
|
|
|
|
/// Returns the MCSymbol marking the end of this basic block.
|
|
MCSymbol *getEndSymbol() const;
|
|
|
|
/// Returns true if this block may have an INLINEASM_BR (overestimate, by
|
|
/// checking if any of the successors are indirect targets of any inlineasm_br
|
|
/// in the function).
|
|
bool mayHaveInlineAsmBr() const;
|
|
|
|
/// Returns true if this is the indirect dest of an INLINEASM_BR.
|
|
bool isInlineAsmBrIndirectTarget() const {
|
|
return IsInlineAsmBrIndirectTarget;
|
|
}
|
|
|
|
/// Indicates if this is the indirect dest of an INLINEASM_BR.
|
|
void setIsInlineAsmBrIndirectTarget(bool V = true) {
|
|
IsInlineAsmBrIndirectTarget = V;
|
|
}
|
|
|
|
/// Returns true if it is legal to hoist instructions into this block.
|
|
bool isLegalToHoistInto() const;
|
|
|
|
// Code Layout methods.
|
|
|
|
/// Move 'this' block before or after the specified block. This only moves
|
|
/// the block, it does not modify the CFG or adjust potential fall-throughs at
|
|
/// the end of the block.
|
|
void moveBefore(MachineBasicBlock *NewAfter);
|
|
void moveAfter(MachineBasicBlock *NewBefore);
|
|
|
|
/// Returns true if this and MBB belong to the same section.
|
|
bool sameSection(const MachineBasicBlock *MBB) const {
|
|
return getSectionID() == MBB->getSectionID();
|
|
}
|
|
|
|
/// Update the terminator instructions in block to account for changes to
|
|
/// block layout which may have been made. PreviousLayoutSuccessor should be
|
|
/// set to the block which may have been used as fallthrough before the block
|
|
/// layout was modified. If the block previously fell through to that block,
|
|
/// it may now need a branch. If it previously branched to another block, it
|
|
/// may now be able to fallthrough to the current layout successor.
|
|
void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
|
|
|
|
// Machine-CFG mutators
|
|
|
|
/// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
|
|
/// of Succ is automatically updated. PROB parameter is stored in
|
|
/// Probabilities list. The default probability is set as unknown. Mixing
|
|
/// known and unknown probabilities in successor list is not allowed. When all
|
|
/// successors have unknown probabilities, 1 / N is returned as the
|
|
/// probability for each successor, where N is the number of successors.
|
|
///
|
|
/// Note that duplicate Machine CFG edges are not allowed.
|
|
void addSuccessor(MachineBasicBlock *Succ,
|
|
BranchProbability Prob = BranchProbability::getUnknown());
|
|
|
|
/// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
|
|
/// of Succ is automatically updated. The probability is not provided because
|
|
/// BPI is not available (e.g. -O0 is used), in which case edge probabilities
|
|
/// won't be used. Using this interface can save some space.
|
|
void addSuccessorWithoutProb(MachineBasicBlock *Succ);
|
|
|
|
/// Set successor probability of a given iterator.
|
|
void setSuccProbability(succ_iterator I, BranchProbability Prob);
|
|
|
|
/// Normalize probabilities of all successors so that the sum of them becomes
|
|
/// one. This is usually done when the current update on this MBB is done, and
|
|
/// the sum of its successors' probabilities is not guaranteed to be one. The
|
|
/// user is responsible for the correct use of this function.
|
|
/// MBB::removeSuccessor() has an option to do this automatically.
|
|
void normalizeSuccProbs() {
|
|
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
|
|
}
|
|
|
|
/// Validate successors' probabilities and check if the sum of them is
|
|
/// approximate one. This only works in DEBUG mode.
|
|
void validateSuccProbs() const;
|
|
|
|
/// Remove successor from the successors list of this MachineBasicBlock. The
|
|
/// Predecessors list of Succ is automatically updated.
|
|
/// If NormalizeSuccProbs is true, then normalize successors' probabilities
|
|
/// after the successor is removed.
|
|
void removeSuccessor(MachineBasicBlock *Succ,
|
|
bool NormalizeSuccProbs = false);
|
|
|
|
/// Remove specified successor from the successors list of this
|
|
/// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
|
|
/// If NormalizeSuccProbs is true, then normalize successors' probabilities
|
|
/// after the successor is removed.
|
|
/// Return the iterator to the element after the one removed.
|
|
succ_iterator removeSuccessor(succ_iterator I,
|
|
bool NormalizeSuccProbs = false);
|
|
|
|
/// Replace successor OLD with NEW and update probability info.
|
|
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
|
|
|
|
/// Copy a successor (and any probability info) from original block to this
|
|
/// block's. Uses an iterator into the original blocks successors.
|
|
///
|
|
/// This is useful when doing a partial clone of successors. Afterward, the
|
|
/// probabilities may need to be normalized.
|
|
void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
|
|
|
|
/// Split the old successor into old plus new and updates the probability
|
|
/// info.
|
|
void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
|
|
bool NormalizeSuccProbs = false);
|
|
|
|
/// Transfers all the successors from MBB to this machine basic block (i.e.,
|
|
/// copies all the successors FromMBB and remove all the successors from
|
|
/// FromMBB).
|
|
void transferSuccessors(MachineBasicBlock *FromMBB);
|
|
|
|
/// Transfers all the successors, as in transferSuccessors, and update PHI
|
|
/// operands in the successor blocks which refer to FromMBB to refer to this.
|
|
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
|
|
|
|
/// Return true if any of the successors have probabilities attached to them.
|
|
bool hasSuccessorProbabilities() const { return !Probs.empty(); }
|
|
|
|
/// Return true if the specified MBB is a predecessor of this block.
|
|
bool isPredecessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return true if the specified MBB is a successor of this block.
|
|
bool isSuccessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return true if the specified MBB will be emitted immediately after this
|
|
/// block, such that if this block exits by falling through, control will
|
|
/// transfer to the specified MBB. Note that MBB need not be a successor at
|
|
/// all, for example if this block ends with an unconditional branch to some
|
|
/// other block.
|
|
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
|
|
|
|
/// Return the fallthrough block if the block can implicitly
|
|
/// transfer control to the block after it by falling off the end of
|
|
/// it. This should return null if it can reach the block after
|
|
/// it, but it uses an explicit branch to do so (e.g., a table
|
|
/// jump). Non-null return is a conservative answer.
|
|
MachineBasicBlock *getFallThrough();
|
|
|
|
/// Return true if the block can implicitly transfer control to the
|
|
/// block after it by falling off the end of it. This should return
|
|
/// false if it can reach the block after it, but it uses an
|
|
/// explicit branch to do so (e.g., a table jump). True is a
|
|
/// conservative answer.
|
|
bool canFallThrough();
|
|
|
|
/// Returns a pointer to the first instruction in this block that is not a
|
|
/// PHINode instruction. When adding instructions to the beginning of the
|
|
/// basic block, they should be added before the returned value, not before
|
|
/// the first instruction, which might be PHI.
|
|
/// Returns end() is there's no non-PHI instruction.
|
|
iterator getFirstNonPHI();
|
|
|
|
/// Return the first instruction in MBB after I that is not a PHI or a label.
|
|
/// This is the correct point to insert lowered copies at the beginning of a
|
|
/// basic block that must be before any debugging information.
|
|
iterator SkipPHIsAndLabels(iterator I);
|
|
|
|
/// Return the first instruction in MBB after I that is not a PHI, label or
|
|
/// debug. This is the correct point to insert copies at the beginning of a
|
|
/// basic block.
|
|
iterator SkipPHIsLabelsAndDebug(iterator I, bool SkipPseudoOp = true);
|
|
|
|
/// Returns an iterator to the first terminator instruction of this basic
|
|
/// block. If a terminator does not exist, it returns end().
|
|
iterator getFirstTerminator();
|
|
const_iterator getFirstTerminator() const {
|
|
return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
|
|
}
|
|
|
|
/// Same getFirstTerminator but it ignores bundles and return an
|
|
/// instr_iterator instead.
|
|
instr_iterator getFirstInstrTerminator();
|
|
|
|
/// Returns an iterator to the first non-debug instruction in the basic block,
|
|
/// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
|
|
/// Pseudo probes are like debug instructions which do not turn into real
|
|
/// machine code. We try to use the function to skip both debug instructions
|
|
/// and pseudo probe operations to avoid API proliferation. This should work
|
|
/// most of the time when considering optimizing the rest of code in the
|
|
/// block, except for certain cases where pseudo probes are designed to block
|
|
/// the optimizations. For example, code merge like optimizations are supposed
|
|
/// to be blocked by pseudo probes for better AutoFDO profile quality.
|
|
/// Therefore, they should be considered as a valid instruction when this
|
|
/// function is called in a context of such optimizations. On the other hand,
|
|
/// \c SkipPseudoOp should be true when it's used in optimizations that
|
|
/// unlikely hurt profile quality, e.g., without block merging. The default
|
|
/// value of \c SkipPseudoOp is set to true to maximize code quality in
|
|
/// general, with an explict false value passed in in a few places like branch
|
|
/// folding and if-conversion to favor profile quality.
|
|
iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
|
|
const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
|
|
return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
|
|
SkipPseudoOp);
|
|
}
|
|
|
|
/// Returns an iterator to the last non-debug instruction in the basic block,
|
|
/// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
|
|
/// Pseudo probes are like debug instructions which do not turn into real
|
|
/// machine code. We try to use the function to skip both debug instructions
|
|
/// and pseudo probe operations to avoid API proliferation. This should work
|
|
/// most of the time when considering optimizing the rest of code in the
|
|
/// block, except for certain cases where pseudo probes are designed to block
|
|
/// the optimizations. For example, code merge like optimizations are supposed
|
|
/// to be blocked by pseudo probes for better AutoFDO profile quality.
|
|
/// Therefore, they should be considered as a valid instruction when this
|
|
/// function is called in a context of such optimizations. On the other hand,
|
|
/// \c SkipPseudoOp should be true when it's used in optimizations that
|
|
/// unlikely hurt profile quality, e.g., without block merging. The default
|
|
/// value of \c SkipPseudoOp is set to true to maximize code quality in
|
|
/// general, with an explict false value passed in in a few places like branch
|
|
/// folding and if-conversion to favor profile quality.
|
|
iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
|
|
const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
|
|
return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
|
|
SkipPseudoOp);
|
|
}
|
|
|
|
/// Convenience function that returns true if the block ends in a return
|
|
/// instruction.
|
|
bool isReturnBlock() const {
|
|
return !empty() && back().isReturn();
|
|
}
|
|
|
|
/// Convenience function that returns true if the bock ends in a EH scope
|
|
/// return instruction.
|
|
bool isEHScopeReturnBlock() const {
|
|
return !empty() && back().isEHScopeReturn();
|
|
}
|
|
|
|
/// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
|
|
/// inserted after this block, and all instructions after \p SplitInst moved
|
|
/// to it (\p SplitInst will be in the original block). If \p LIS is provided,
|
|
/// LiveIntervals will be appropriately updated. \return the newly inserted
|
|
/// block.
|
|
///
|
|
/// If \p UpdateLiveIns is true, this will ensure the live ins list is
|
|
/// accurate, including for physreg uses/defs in the original block.
|
|
MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
|
|
LiveIntervals *LIS = nullptr);
|
|
|
|
/// Split the critical edge from this block to the given successor block, and
|
|
/// return the newly created block, or null if splitting is not possible.
|
|
///
|
|
/// This function updates LiveVariables, MachineDominatorTree, and
|
|
/// MachineLoopInfo, as applicable.
|
|
MachineBasicBlock *
|
|
SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
|
|
std::vector<SparseBitVector<>> *LiveInSets = nullptr);
|
|
|
|
/// Check if the edge between this block and the given successor \p
|
|
/// Succ, can be split. If this returns true a subsequent call to
|
|
/// SplitCriticalEdge is guaranteed to return a valid basic block if
|
|
/// no changes occurred in the meantime.
|
|
bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
|
|
|
|
void pop_front() { Insts.pop_front(); }
|
|
void pop_back() { Insts.pop_back(); }
|
|
void push_back(MachineInstr *MI) { Insts.push_back(MI); }
|
|
|
|
/// Insert MI into the instruction list before I, possibly inside a bundle.
|
|
///
|
|
/// If the insertion point is inside a bundle, MI will be added to the bundle,
|
|
/// otherwise MI will not be added to any bundle. That means this function
|
|
/// alone can't be used to prepend or append instructions to bundles. See
|
|
/// MIBundleBuilder::insert() for a more reliable way of doing that.
|
|
instr_iterator insert(instr_iterator I, MachineInstr *M);
|
|
|
|
/// Insert a range of instructions into the instruction list before I.
|
|
template<typename IT>
|
|
void insert(iterator I, IT S, IT E) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
Insts.insert(I.getInstrIterator(), S, E);
|
|
}
|
|
|
|
/// Insert MI into the instruction list before I.
|
|
iterator insert(iterator I, MachineInstr *MI) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
return Insts.insert(I.getInstrIterator(), MI);
|
|
}
|
|
|
|
/// Insert MI into the instruction list after I.
|
|
iterator insertAfter(iterator I, MachineInstr *MI) {
|
|
assert((I == end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
return Insts.insertAfter(I.getInstrIterator(), MI);
|
|
}
|
|
|
|
/// If I is bundled then insert MI into the instruction list after the end of
|
|
/// the bundle, otherwise insert MI immediately after I.
|
|
instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
|
|
assert((I == instr_end() || I->getParent() == this) &&
|
|
"iterator points outside of basic block");
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
while (I->isBundledWithSucc())
|
|
++I;
|
|
return Insts.insertAfter(I, MI);
|
|
}
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
instr_iterator erase(instr_iterator I);
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
instr_iterator erase_instr(MachineInstr *I) {
|
|
return erase(instr_iterator(I));
|
|
}
|
|
|
|
/// Remove a range of instructions from the instruction list and delete them.
|
|
iterator erase(iterator I, iterator E) {
|
|
return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
|
|
}
|
|
|
|
/// Remove an instruction or bundle from the instruction list and delete it.
|
|
///
|
|
/// If I points to a bundle of instructions, they are all erased.
|
|
iterator erase(iterator I) {
|
|
return erase(I, std::next(I));
|
|
}
|
|
|
|
/// Remove an instruction from the instruction list and delete it.
|
|
///
|
|
/// If I is the head of a bundle of instructions, the whole bundle will be
|
|
/// erased.
|
|
iterator erase(MachineInstr *I) {
|
|
return erase(iterator(I));
|
|
}
|
|
|
|
/// Remove the unbundled instruction from the instruction list without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used to remove bundled instructions, use
|
|
/// remove_instr to remove individual instructions from a bundle.
|
|
MachineInstr *remove(MachineInstr *I) {
|
|
assert(!I->isBundled() && "Cannot remove bundled instructions");
|
|
return Insts.remove(instr_iterator(I));
|
|
}
|
|
|
|
/// Remove the possibly bundled instruction from the instruction list
|
|
/// without deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle will still be bundled after removing the single instruction.
|
|
MachineInstr *remove_instr(MachineInstr *I);
|
|
|
|
void clear() {
|
|
Insts.clear();
|
|
}
|
|
|
|
/// Take an instruction from MBB 'Other' at the position From, and insert it
|
|
/// into this MBB right before 'Where'.
|
|
///
|
|
/// If From points to a bundle of instructions, the whole bundle is moved.
|
|
void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
|
|
// The range splice() doesn't allow noop moves, but this one does.
|
|
if (Where != From)
|
|
splice(Where, Other, From, std::next(From));
|
|
}
|
|
|
|
/// Take a block of instructions from MBB 'Other' in the range [From, To),
|
|
/// and insert them into this MBB right before 'Where'.
|
|
///
|
|
/// The instruction at 'Where' must not be included in the range of
|
|
/// instructions to move.
|
|
void splice(iterator Where, MachineBasicBlock *Other,
|
|
iterator From, iterator To) {
|
|
Insts.splice(Where.getInstrIterator(), Other->Insts,
|
|
From.getInstrIterator(), To.getInstrIterator());
|
|
}
|
|
|
|
/// This method unlinks 'this' from the containing function, and returns it,
|
|
/// but does not delete it.
|
|
MachineBasicBlock *removeFromParent();
|
|
|
|
/// This method unlinks 'this' from the containing function and deletes it.
|
|
void eraseFromParent();
|
|
|
|
/// Given a machine basic block that branched to 'Old', change the code and
|
|
/// CFG so that it branches to 'New' instead.
|
|
void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
|
|
|
|
/// Update all phi nodes in this basic block to refer to basic block \p New
|
|
/// instead of basic block \p Old.
|
|
void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
|
|
|
|
/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
|
|
/// and DBG_LABEL instructions. Return UnknownLoc if there is none.
|
|
DebugLoc findDebugLoc(instr_iterator MBBI);
|
|
DebugLoc findDebugLoc(iterator MBBI) {
|
|
return findDebugLoc(MBBI.getInstrIterator());
|
|
}
|
|
|
|
/// Has exact same behavior as @ref findDebugLoc (it also
|
|
/// searches from the first to the last MI of this MBB) except
|
|
/// that this takes reverse iterator.
|
|
DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
|
|
DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
|
|
return rfindDebugLoc(MBBI.getInstrIterator());
|
|
}
|
|
|
|
/// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
|
|
/// instructions. Return UnknownLoc if there is none.
|
|
DebugLoc findPrevDebugLoc(instr_iterator MBBI);
|
|
DebugLoc findPrevDebugLoc(iterator MBBI) {
|
|
return findPrevDebugLoc(MBBI.getInstrIterator());
|
|
}
|
|
|
|
/// Has exact same behavior as @ref findPrevDebugLoc (it also
|
|
/// searches from the last to the first MI of this MBB) except
|
|
/// that this takes reverse iterator.
|
|
DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
|
|
DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
|
|
return rfindPrevDebugLoc(MBBI.getInstrIterator());
|
|
}
|
|
|
|
/// Find and return the merged DebugLoc of the branch instructions of the
|
|
/// block. Return UnknownLoc if there is none.
|
|
DebugLoc findBranchDebugLoc();
|
|
|
|
/// Possible outcome of a register liveness query to computeRegisterLiveness()
|
|
enum LivenessQueryResult {
|
|
LQR_Live, ///< Register is known to be (at least partially) live.
|
|
LQR_Dead, ///< Register is known to be fully dead.
|
|
LQR_Unknown ///< Register liveness not decidable from local neighborhood.
|
|
};
|
|
|
|
/// Return whether (physical) register \p Reg has been defined and not
|
|
/// killed as of just before \p Before.
|
|
///
|
|
/// Search is localised to a neighborhood of \p Neighborhood instructions
|
|
/// before (searching for defs or kills) and \p Neighborhood instructions
|
|
/// after (searching just for defs) \p Before.
|
|
///
|
|
/// \p Reg must be a physical register.
|
|
LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
|
|
MCRegister Reg,
|
|
const_iterator Before,
|
|
unsigned Neighborhood = 10) const;
|
|
|
|
// Debugging methods.
|
|
void dump() const;
|
|
void print(raw_ostream &OS, const SlotIndexes * = nullptr,
|
|
bool IsStandalone = true) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const SlotIndexes * = nullptr, bool IsStandalone = true) const;
|
|
|
|
enum PrintNameFlag {
|
|
PrintNameIr = (1 << 0), ///< Add IR name where available
|
|
PrintNameAttributes = (1 << 1), ///< Print attributes
|
|
};
|
|
|
|
void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
|
|
ModuleSlotTracker *moduleSlotTracker = nullptr) const;
|
|
|
|
// Printing method used by LoopInfo.
|
|
void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
|
|
|
|
/// MachineBasicBlocks are uniquely numbered at the function level, unless
|
|
/// they're not in a MachineFunction yet, in which case this will return -1.
|
|
int getNumber() const { return Number; }
|
|
void setNumber(int N) { Number = N; }
|
|
|
|
/// Return the MCSymbol for this basic block.
|
|
MCSymbol *getSymbol() const;
|
|
|
|
/// Return the EHCatchret Symbol for this basic block.
|
|
MCSymbol *getEHCatchretSymbol() const;
|
|
|
|
Optional<uint64_t> getIrrLoopHeaderWeight() const {
|
|
return IrrLoopHeaderWeight;
|
|
}
|
|
|
|
void setIrrLoopHeaderWeight(uint64_t Weight) {
|
|
IrrLoopHeaderWeight = Weight;
|
|
}
|
|
|
|
private:
|
|
/// Return probability iterator corresponding to the I successor iterator.
|
|
probability_iterator getProbabilityIterator(succ_iterator I);
|
|
const_probability_iterator
|
|
getProbabilityIterator(const_succ_iterator I) const;
|
|
|
|
friend class MachineBranchProbabilityInfo;
|
|
friend class MIPrinter;
|
|
|
|
/// Return probability of the edge from this block to MBB. This method should
|
|
/// NOT be called directly, but by using getEdgeProbability method from
|
|
/// MachineBranchProbabilityInfo class.
|
|
BranchProbability getSuccProbability(const_succ_iterator Succ) const;
|
|
|
|
// Methods used to maintain doubly linked list of blocks...
|
|
friend struct ilist_callback_traits<MachineBasicBlock>;
|
|
|
|
// Machine-CFG mutators
|
|
|
|
/// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
|
|
/// unless you know what you're doing, because it doesn't update Pred's
|
|
/// successors list. Use Pred->addSuccessor instead.
|
|
void addPredecessor(MachineBasicBlock *Pred);
|
|
|
|
/// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
|
|
/// unless you know what you're doing, because it doesn't update Pred's
|
|
/// successors list. Use Pred->removeSuccessor instead.
|
|
void removePredecessor(MachineBasicBlock *Pred);
|
|
};
|
|
|
|
raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
|
|
|
|
/// Prints a machine basic block reference.
|
|
///
|
|
/// The format is:
|
|
/// %bb.5 - a machine basic block with MBB.getNumber() == 5.
|
|
///
|
|
/// Usage: OS << printMBBReference(MBB) << '\n';
|
|
Printable printMBBReference(const MachineBasicBlock &MBB);
|
|
|
|
// This is useful when building IndexedMaps keyed on basic block pointers.
|
|
struct MBB2NumberFunctor {
|
|
using argument_type = const MachineBasicBlock *;
|
|
unsigned operator()(const MachineBasicBlock *MBB) const {
|
|
return MBB->getNumber();
|
|
}
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a
|
|
// MachineFunction as a graph of MachineBasicBlocks.
|
|
//
|
|
|
|
template <> struct GraphTraits<MachineBasicBlock *> {
|
|
using NodeRef = MachineBasicBlock *;
|
|
using ChildIteratorType = MachineBasicBlock::succ_iterator;
|
|
|
|
static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<const MachineBasicBlock *> {
|
|
using NodeRef = const MachineBasicBlock *;
|
|
using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
|
|
|
|
static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
|
|
};
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a
|
|
// MachineFunction as a graph of MachineBasicBlocks and to walk it
|
|
// in inverse order. Inverse order for a function is considered
|
|
// to be when traversing the predecessor edges of a MBB
|
|
// instead of the successor edges.
|
|
//
|
|
template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
|
|
using NodeRef = MachineBasicBlock *;
|
|
using ChildIteratorType = MachineBasicBlock::pred_iterator;
|
|
|
|
static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
|
|
return G.Graph;
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
|
|
using NodeRef = const MachineBasicBlock *;
|
|
using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
|
|
|
|
static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
|
|
return G.Graph;
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
|
|
};
|
|
|
|
/// MachineInstrSpan provides an interface to get an iteration range
|
|
/// containing the instruction it was initialized with, along with all
|
|
/// those instructions inserted prior to or following that instruction
|
|
/// at some point after the MachineInstrSpan is constructed.
|
|
class MachineInstrSpan {
|
|
MachineBasicBlock &MBB;
|
|
MachineBasicBlock::iterator I, B, E;
|
|
|
|
public:
|
|
MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
|
|
: MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
|
|
E(std::next(I)) {
|
|
assert(I == BB->end() || I->getParent() == BB);
|
|
}
|
|
|
|
MachineBasicBlock::iterator begin() {
|
|
return B == MBB.end() ? MBB.begin() : std::next(B);
|
|
}
|
|
MachineBasicBlock::iterator end() { return E; }
|
|
bool empty() { return begin() == end(); }
|
|
|
|
MachineBasicBlock::iterator getInitial() { return I; }
|
|
};
|
|
|
|
/// Increment \p It until it points to a non-debug instruction or to \p End
|
|
/// and return the resulting iterator. This function should only be used
|
|
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
|
|
/// const_instr_iterator} and the respective reverse iterators.
|
|
template <typename IterT>
|
|
inline IterT skipDebugInstructionsForward(IterT It, IterT End,
|
|
bool SkipPseudoOp = true) {
|
|
while (It != End &&
|
|
(It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
|
|
++It;
|
|
return It;
|
|
}
|
|
|
|
/// Decrement \p It until it points to a non-debug instruction or to \p Begin
|
|
/// and return the resulting iterator. This function should only be used
|
|
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
|
|
/// const_instr_iterator} and the respective reverse iterators.
|
|
template <class IterT>
|
|
inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
|
|
bool SkipPseudoOp = true) {
|
|
while (It != Begin &&
|
|
(It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
|
|
--It;
|
|
return It;
|
|
}
|
|
|
|
/// Increment \p It, then continue incrementing it while it points to a debug
|
|
/// instruction. A replacement for std::next.
|
|
template <typename IterT>
|
|
inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
|
|
return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
|
|
}
|
|
|
|
/// Decrement \p It, then continue decrementing it while it points to a debug
|
|
/// instruction. A replacement for std::prev.
|
|
template <typename IterT>
|
|
inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
|
|
return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
|
|
}
|
|
|
|
/// Construct a range iterator which begins at \p It and moves forwards until
|
|
/// \p End is reached, skipping any debug instructions.
|
|
template <typename IterT>
|
|
inline auto instructionsWithoutDebug(IterT It, IterT End,
|
|
bool SkipPseudoOp = true) {
|
|
return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
|
|
return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
|
|
});
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
|