mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
8920d6a40a
Summary: First patch to support Safe Whole Program Devirtualization Enablement, see RFC here: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html Always emit !vcall_visibility metadata under -fwhole-program-vtables, and not just for -fvirtual-function-elimination. The vcall visibility metadata will (in a subsequent patch) be used to communicate to WPD which vtables are safe to devirtualize, and we will optionally convert the metadata to hidden visibility at link time. Subsequent follow on patches will help enable this by adding vcall_visibility metadata to the ThinLTO summaries, and always emit type test intrinsics under -fwhole-program-vtables (and not just for vtables with hidden visibility). In order to do this safely with VFE, since for VFE all vtable loads must be type checked loads which will no longer be the case, this patch adds a new "Virtual Function Elim" module flag to communicate to GlobalDCE whether to perform VFE using the vcall_visibility metadata. One additional advantage of using the vcall_visibility metadata to drive more WPD at LTO link time is that we can use the same mechanism to enable more aggressive VFE at LTO link time as well. The link time option proposed in the RFC will convert vcall_visibility metadata to hidden (aka linkage unit visibility), which combined with -fvirtual-function-elimination will allow it to be done more aggressively at LTO link time under the same conditions. Reviewers: pcc, ostannard, evgeny777, steven_wu Subscribers: mehdi_amini, Prazek, hiraditya, dexonsmith, davidxl, cfe-commits, llvm-commits Tags: #clang, #llvm Differential Revision: https://reviews.llvm.org/D71907
461 lines
16 KiB
C++
461 lines
16 KiB
C++
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transform is designed to eliminate unreachable internal globals from the
|
|
// program. It uses an aggressive algorithm, searching out globals that are
|
|
// known to be alive. After it finds all of the globals which are needed, it
|
|
// deletes whatever is left over. This allows it to delete recursive chunks of
|
|
// the program which are unreachable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/GlobalDCE.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/CtorUtils.h"
|
|
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "globaldce"
|
|
|
|
static cl::opt<bool>
|
|
ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
|
|
cl::desc("Enable virtual function elimination"));
|
|
|
|
STATISTIC(NumAliases , "Number of global aliases removed");
|
|
STATISTIC(NumFunctions, "Number of functions removed");
|
|
STATISTIC(NumIFuncs, "Number of indirect functions removed");
|
|
STATISTIC(NumVariables, "Number of global variables removed");
|
|
STATISTIC(NumVFuncs, "Number of virtual functions removed");
|
|
|
|
namespace {
|
|
class GlobalDCELegacyPass : public ModulePass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
GlobalDCELegacyPass() : ModulePass(ID) {
|
|
initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// run - Do the GlobalDCE pass on the specified module, optionally updating
|
|
// the specified callgraph to reflect the changes.
|
|
//
|
|
bool runOnModule(Module &M) override {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
// We need a minimally functional dummy module analysis manager. It needs
|
|
// to at least know about the possibility of proxying a function analysis
|
|
// manager.
|
|
FunctionAnalysisManager DummyFAM;
|
|
ModuleAnalysisManager DummyMAM;
|
|
DummyMAM.registerPass(
|
|
[&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
|
|
|
|
auto PA = Impl.run(M, DummyMAM);
|
|
return !PA.areAllPreserved();
|
|
}
|
|
|
|
private:
|
|
GlobalDCEPass Impl;
|
|
};
|
|
}
|
|
|
|
char GlobalDCELegacyPass::ID = 0;
|
|
INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
|
|
"Dead Global Elimination", false, false)
|
|
|
|
// Public interface to the GlobalDCEPass.
|
|
ModulePass *llvm::createGlobalDCEPass() {
|
|
return new GlobalDCELegacyPass();
|
|
}
|
|
|
|
/// Returns true if F is effectively empty.
|
|
static bool isEmptyFunction(Function *F) {
|
|
BasicBlock &Entry = F->getEntryBlock();
|
|
for (auto &I : Entry) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
if (auto *RI = dyn_cast<ReturnInst>(&I))
|
|
return !RI->getReturnValue();
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Compute the set of GlobalValue that depends from V.
|
|
/// The recursion stops as soon as a GlobalValue is met.
|
|
void GlobalDCEPass::ComputeDependencies(Value *V,
|
|
SmallPtrSetImpl<GlobalValue *> &Deps) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
Function *Parent = I->getParent()->getParent();
|
|
Deps.insert(Parent);
|
|
} else if (auto *GV = dyn_cast<GlobalValue>(V)) {
|
|
Deps.insert(GV);
|
|
} else if (auto *CE = dyn_cast<Constant>(V)) {
|
|
// Avoid walking the whole tree of a big ConstantExprs multiple times.
|
|
auto Where = ConstantDependenciesCache.find(CE);
|
|
if (Where != ConstantDependenciesCache.end()) {
|
|
auto const &K = Where->second;
|
|
Deps.insert(K.begin(), K.end());
|
|
} else {
|
|
SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
|
|
for (User *CEUser : CE->users())
|
|
ComputeDependencies(CEUser, LocalDeps);
|
|
Deps.insert(LocalDeps.begin(), LocalDeps.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
|
|
SmallPtrSet<GlobalValue *, 8> Deps;
|
|
for (User *User : GV.users())
|
|
ComputeDependencies(User, Deps);
|
|
Deps.erase(&GV); // Remove self-reference.
|
|
for (GlobalValue *GVU : Deps) {
|
|
// If this is a dep from a vtable to a virtual function, and we have
|
|
// complete information about all virtual call sites which could call
|
|
// though this vtable, then skip it, because the call site information will
|
|
// be more precise.
|
|
if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
|
|
<< GV.getName() << "\n");
|
|
continue;
|
|
}
|
|
GVDependencies[GVU].insert(&GV);
|
|
}
|
|
}
|
|
|
|
/// Mark Global value as Live
|
|
void GlobalDCEPass::MarkLive(GlobalValue &GV,
|
|
SmallVectorImpl<GlobalValue *> *Updates) {
|
|
auto const Ret = AliveGlobals.insert(&GV);
|
|
if (!Ret.second)
|
|
return;
|
|
|
|
if (Updates)
|
|
Updates->push_back(&GV);
|
|
if (Comdat *C = GV.getComdat()) {
|
|
for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
|
|
MarkLive(*CM.second, Updates); // Recursion depth is only two because only
|
|
// globals in the same comdat are visited.
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanVTables(Module &M) {
|
|
SmallVector<MDNode *, 2> Types;
|
|
LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
|
|
|
|
auto *LTOPostLinkMD =
|
|
cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
|
|
bool LTOPostLink =
|
|
LTOPostLinkMD &&
|
|
(cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
|
|
|
|
for (GlobalVariable &GV : M.globals()) {
|
|
Types.clear();
|
|
GV.getMetadata(LLVMContext::MD_type, Types);
|
|
if (GV.isDeclaration() || Types.empty())
|
|
continue;
|
|
|
|
// Use the typeid metadata on the vtable to build a mapping from typeids to
|
|
// the list of (GV, offset) pairs which are the possible vtables for that
|
|
// typeid.
|
|
for (MDNode *Type : Types) {
|
|
Metadata *TypeID = Type->getOperand(1).get();
|
|
|
|
uint64_t Offset =
|
|
cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
|
|
->getZExtValue();
|
|
|
|
TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
|
|
}
|
|
|
|
// If the type corresponding to the vtable is private to this translation
|
|
// unit, we know that we can see all virtual functions which might use it,
|
|
// so VFE is safe.
|
|
if (auto GO = dyn_cast<GlobalObject>(&GV)) {
|
|
GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
|
|
if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
|
|
(LTOPostLink &&
|
|
TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
|
|
LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
|
|
VFESafeVTables.insert(&GV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
|
|
uint64_t CallOffset) {
|
|
for (auto &VTableInfo : TypeIdMap[TypeId]) {
|
|
GlobalVariable *VTable = VTableInfo.first;
|
|
uint64_t VTableOffset = VTableInfo.second;
|
|
|
|
Constant *Ptr =
|
|
getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
|
|
*Caller->getParent());
|
|
if (!Ptr) {
|
|
LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
|
|
VFESafeVTables.erase(VTable);
|
|
return;
|
|
}
|
|
|
|
auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
|
|
if (!Callee) {
|
|
LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
|
|
VFESafeVTables.erase(VTable);
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
|
|
<< Callee->getName() << "\n");
|
|
GVDependencies[Caller].insert(Callee);
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
|
|
LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
|
|
Function *TypeCheckedLoadFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
|
|
|
|
if (!TypeCheckedLoadFunc)
|
|
return;
|
|
|
|
for (auto U : TypeCheckedLoadFunc->users()) {
|
|
auto CI = dyn_cast<CallInst>(U);
|
|
if (!CI)
|
|
continue;
|
|
|
|
auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
|
|
Value *TypeIdValue = CI->getArgOperand(2);
|
|
auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
|
|
|
|
if (Offset) {
|
|
ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
|
|
} else {
|
|
// type.checked.load with a non-constant offset, so assume every entry in
|
|
// every matching vtable is used.
|
|
for (auto &VTableInfo : TypeIdMap[TypeId]) {
|
|
VFESafeVTables.erase(VTableInfo.first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
|
|
if (!ClEnableVFE)
|
|
return;
|
|
|
|
// If the Virtual Function Elim module flag is present and set to zero, then
|
|
// the vcall_visibility metadata was inserted for another optimization (WPD)
|
|
// and we may not have type checked loads on all accesses to the vtable.
|
|
// Don't attempt VFE in that case.
|
|
auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
|
|
M.getModuleFlag("Virtual Function Elim"));
|
|
if (!Val || Val->getZExtValue() == 0)
|
|
return;
|
|
|
|
ScanVTables(M);
|
|
|
|
if (VFESafeVTables.empty())
|
|
return;
|
|
|
|
ScanTypeCheckedLoadIntrinsics(M);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "VFE safe vtables:\n";
|
|
for (auto *VTable : VFESafeVTables)
|
|
dbgs() << " " << VTable->getName() << "\n";
|
|
);
|
|
}
|
|
|
|
PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
|
|
bool Changed = false;
|
|
|
|
// The algorithm first computes the set L of global variables that are
|
|
// trivially live. Then it walks the initialization of these variables to
|
|
// compute the globals used to initialize them, which effectively builds a
|
|
// directed graph where nodes are global variables, and an edge from A to B
|
|
// means B is used to initialize A. Finally, it propagates the liveness
|
|
// information through the graph starting from the nodes in L. Nodes note
|
|
// marked as alive are discarded.
|
|
|
|
// Remove empty functions from the global ctors list.
|
|
Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
|
|
|
|
// Collect the set of members for each comdat.
|
|
for (Function &F : M)
|
|
if (Comdat *C = F.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &F));
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (Comdat *C = GV.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &GV));
|
|
for (GlobalAlias &GA : M.aliases())
|
|
if (Comdat *C = GA.getComdat())
|
|
ComdatMembers.insert(std::make_pair(C, &GA));
|
|
|
|
// Add dependencies between virtual call sites and the virtual functions they
|
|
// might call, if we have that information.
|
|
AddVirtualFunctionDependencies(M);
|
|
|
|
// Loop over the module, adding globals which are obviously necessary.
|
|
for (GlobalObject &GO : M.global_objects()) {
|
|
Changed |= RemoveUnusedGlobalValue(GO);
|
|
// Functions with external linkage are needed if they have a body.
|
|
// Externally visible & appending globals are needed, if they have an
|
|
// initializer.
|
|
if (!GO.isDeclaration())
|
|
if (!GO.isDiscardableIfUnused())
|
|
MarkLive(GO);
|
|
|
|
UpdateGVDependencies(GO);
|
|
}
|
|
|
|
// Compute direct dependencies of aliases.
|
|
for (GlobalAlias &GA : M.aliases()) {
|
|
Changed |= RemoveUnusedGlobalValue(GA);
|
|
// Externally visible aliases are needed.
|
|
if (!GA.isDiscardableIfUnused())
|
|
MarkLive(GA);
|
|
|
|
UpdateGVDependencies(GA);
|
|
}
|
|
|
|
// Compute direct dependencies of ifuncs.
|
|
for (GlobalIFunc &GIF : M.ifuncs()) {
|
|
Changed |= RemoveUnusedGlobalValue(GIF);
|
|
// Externally visible ifuncs are needed.
|
|
if (!GIF.isDiscardableIfUnused())
|
|
MarkLive(GIF);
|
|
|
|
UpdateGVDependencies(GIF);
|
|
}
|
|
|
|
// Propagate liveness from collected Global Values through the computed
|
|
// dependencies.
|
|
SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
|
|
AliveGlobals.end()};
|
|
while (!NewLiveGVs.empty()) {
|
|
GlobalValue *LGV = NewLiveGVs.pop_back_val();
|
|
for (auto *GVD : GVDependencies[LGV])
|
|
MarkLive(*GVD, &NewLiveGVs);
|
|
}
|
|
|
|
// Now that all globals which are needed are in the AliveGlobals set, we loop
|
|
// through the program, deleting those which are not alive.
|
|
//
|
|
|
|
// The first pass is to drop initializers of global variables which are dead.
|
|
std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (!AliveGlobals.count(&GV)) {
|
|
DeadGlobalVars.push_back(&GV); // Keep track of dead globals
|
|
if (GV.hasInitializer()) {
|
|
Constant *Init = GV.getInitializer();
|
|
GV.setInitializer(nullptr);
|
|
if (isSafeToDestroyConstant(Init))
|
|
Init->destroyConstant();
|
|
}
|
|
}
|
|
|
|
// The second pass drops the bodies of functions which are dead...
|
|
std::vector<Function *> DeadFunctions;
|
|
for (Function &F : M)
|
|
if (!AliveGlobals.count(&F)) {
|
|
DeadFunctions.push_back(&F); // Keep track of dead globals
|
|
if (!F.isDeclaration())
|
|
F.deleteBody();
|
|
}
|
|
|
|
// The third pass drops targets of aliases which are dead...
|
|
std::vector<GlobalAlias*> DeadAliases;
|
|
for (GlobalAlias &GA : M.aliases())
|
|
if (!AliveGlobals.count(&GA)) {
|
|
DeadAliases.push_back(&GA);
|
|
GA.setAliasee(nullptr);
|
|
}
|
|
|
|
// The fourth pass drops targets of ifuncs which are dead...
|
|
std::vector<GlobalIFunc*> DeadIFuncs;
|
|
for (GlobalIFunc &GIF : M.ifuncs())
|
|
if (!AliveGlobals.count(&GIF)) {
|
|
DeadIFuncs.push_back(&GIF);
|
|
GIF.setResolver(nullptr);
|
|
}
|
|
|
|
// Now that all interferences have been dropped, delete the actual objects
|
|
// themselves.
|
|
auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
|
|
RemoveUnusedGlobalValue(*GV);
|
|
GV->eraseFromParent();
|
|
Changed = true;
|
|
};
|
|
|
|
NumFunctions += DeadFunctions.size();
|
|
for (Function *F : DeadFunctions) {
|
|
if (!F->use_empty()) {
|
|
// Virtual functions might still be referenced by one or more vtables,
|
|
// but if we've proven them to be unused then it's safe to replace the
|
|
// virtual function pointers with null, allowing us to remove the
|
|
// function itself.
|
|
++NumVFuncs;
|
|
F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
|
|
}
|
|
EraseUnusedGlobalValue(F);
|
|
}
|
|
|
|
NumVariables += DeadGlobalVars.size();
|
|
for (GlobalVariable *GV : DeadGlobalVars)
|
|
EraseUnusedGlobalValue(GV);
|
|
|
|
NumAliases += DeadAliases.size();
|
|
for (GlobalAlias *GA : DeadAliases)
|
|
EraseUnusedGlobalValue(GA);
|
|
|
|
NumIFuncs += DeadIFuncs.size();
|
|
for (GlobalIFunc *GIF : DeadIFuncs)
|
|
EraseUnusedGlobalValue(GIF);
|
|
|
|
// Make sure that all memory is released
|
|
AliveGlobals.clear();
|
|
ConstantDependenciesCache.clear();
|
|
GVDependencies.clear();
|
|
ComdatMembers.clear();
|
|
TypeIdMap.clear();
|
|
VFESafeVTables.clear();
|
|
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
|
|
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
|
|
// If found, check to see if the constant pointer ref is safe to destroy, and if
|
|
// so, nuke it. This will reduce the reference count on the global value, which
|
|
// might make it deader.
|
|
//
|
|
bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
|
|
if (GV.use_empty())
|
|
return false;
|
|
GV.removeDeadConstantUsers();
|
|
return GV.use_empty();
|
|
}
|