1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00
llvm-mirror/include/llvm/Support/BinaryStreamArray.h
Zachary Turner aaaf4b3ba3 [CodeView] Add a random access type visitor.
This adds a visitor that is capable of accessing type
records randomly and caching intermediate results that it
learns about during partial linear scans.  This yields
amortized O(1) access to a type stream even though type
streams cannot normally be indexed.

Differential Revision: https://reviews.llvm.org/D33009

llvm-svn: 302936
2017-05-12 19:18:12 +00:00

401 lines
13 KiB
C++

//===- BinaryStreamArray.h - Array backed by an arbitrary stream *- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_BINARYSTREAMARRAY_H
#define LLVM_SUPPORT_BINARYSTREAMARRAY_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>
/// Lightweight arrays that are backed by an arbitrary BinaryStream. This file
/// provides two different array implementations.
///
/// VarStreamArray - Arrays of variable length records. The user specifies
/// an Extractor type that can extract a record from a given offset and
/// return the number of bytes consumed by the record.
///
/// FixedStreamArray - Arrays of fixed length records. This is similar in
/// spirit to ArrayRef<T>, but since it is backed by a BinaryStream, the
/// elements of the array need not be laid out in contiguous memory.
namespace llvm {
/// VarStreamArrayExtractor is intended to be specialized to provide customized
/// extraction logic. On input it receives a BinaryStreamRef pointing to the
/// beginning of the next record, but where the length of the record is not yet
/// known. Upon completion, it should return an appropriate Error instance if
/// a record could not be extracted, or if one could be extracted it should
/// return success and set Len to the number of bytes this record occupied in
/// the underlying stream, and it should fill out the fields of the value type
/// Item appropriately to represent the current record.
///
/// You can specialize this template for your own custom value types to avoid
/// having to specify a second template argument to VarStreamArray (documented
/// below).
template <typename T> struct VarStreamArrayExtractor {
struct ContextType {};
// Method intentionally deleted. You must provide an explicit specialization
// with one of the following two methods implemented.
static Error extract(BinaryStreamRef Stream, uint32_t &Len, T &Item) = delete;
static Error extract(BinaryStreamRef Stream, uint32_t &Len, T &Item,
const ContextType &Ctx) = delete;
};
template <typename ArrayType, typename Value, typename Extractor,
typename WrappedCtx>
class VarStreamArrayIterator
: public iterator_facade_base<
VarStreamArrayIterator<ArrayType, Value, Extractor, WrappedCtx>,
std::forward_iterator_tag, Value> {
typedef VarStreamArrayIterator<ArrayType, Value, Extractor, WrappedCtx>
IterType;
public:
VarStreamArrayIterator() = default;
VarStreamArrayIterator(const ArrayType &Array, const WrappedCtx &Ctx,
BinaryStreamRef Stream, bool *HadError = nullptr,
uint32_t Offset = 0)
: IterRef(Stream), Ctx(&Ctx), Array(&Array), AbsOffset(Offset),
HadError(HadError) {
if (IterRef.getLength() == 0)
moveToEnd();
else {
auto EC = Ctx.template invoke<Extractor>(IterRef, ThisLen, ThisValue);
if (EC) {
consumeError(std::move(EC));
markError();
}
}
}
VarStreamArrayIterator(const ArrayType &Array, const WrappedCtx &Ctx,
bool *HadError = nullptr)
: VarStreamArrayIterator(Array, Ctx, Array.Stream, HadError) {}
VarStreamArrayIterator(const WrappedCtx &Ctx) : Ctx(&Ctx) {}
VarStreamArrayIterator(const VarStreamArrayIterator &Other) = default;
~VarStreamArrayIterator() = default;
bool operator==(const IterType &R) const {
if (Array && R.Array) {
// Both have a valid array, make sure they're same.
assert(Array == R.Array);
return IterRef == R.IterRef;
}
// Both iterators are at the end.
if (!Array && !R.Array)
return true;
// One is not at the end and one is.
return false;
}
const Value &operator*() const {
assert(Array && !HasError);
return ThisValue;
}
Value &operator*() {
assert(Array && !HasError);
return ThisValue;
}
IterType &operator+=(unsigned N) {
for (unsigned I = 0; I < N; ++I) {
// We are done with the current record, discard it so that we are
// positioned at the next record.
AbsOffset += ThisLen;
IterRef = IterRef.drop_front(ThisLen);
if (IterRef.getLength() == 0) {
// There is nothing after the current record, we must make this an end
// iterator.
moveToEnd();
} else {
// There is some data after the current record.
auto EC = Ctx->template invoke<Extractor>(IterRef, ThisLen, ThisValue);
if (EC) {
consumeError(std::move(EC));
markError();
} else if (ThisLen == 0) {
// An empty record? Make this an end iterator.
moveToEnd();
}
}
}
return *this;
}
uint32_t offset() const { return AbsOffset; }
uint32_t getRecordLength() const { return ThisLen; }
private:
void moveToEnd() {
Array = nullptr;
ThisLen = 0;
}
void markError() {
moveToEnd();
HasError = true;
if (HadError != nullptr)
*HadError = true;
}
Value ThisValue;
BinaryStreamRef IterRef;
const WrappedCtx *Ctx{nullptr};
const ArrayType *Array{nullptr};
uint32_t ThisLen{0};
uint32_t AbsOffset{0};
bool HasError{false};
bool *HadError{nullptr};
};
template <typename T, typename Context> struct ContextWrapper {
ContextWrapper() = default;
explicit ContextWrapper(Context &&Ctx) : Ctx(Ctx) {}
template <typename Extractor>
Error invoke(BinaryStreamRef Stream, uint32_t &Len, T &Item) const {
return Extractor::extract(Stream, Len, Item, Ctx);
}
Context Ctx;
};
template <typename T> struct ContextWrapper<T, void> {
ContextWrapper() = default;
template <typename Extractor>
Error invoke(BinaryStreamRef Stream, uint32_t &Len, T &Item) const {
return Extractor::extract(Stream, Len, Item);
}
};
/// VarStreamArray represents an array of variable length records backed by a
/// stream. This could be a contiguous sequence of bytes in memory, it could
/// be a file on disk, or it could be a PDB stream where bytes are stored as
/// discontiguous blocks in a file. Usually it is desirable to treat arrays
/// as contiguous blocks of memory, but doing so with large PDB files, for
/// example, could mean allocating huge amounts of memory just to allow
/// re-ordering of stream data to be contiguous before iterating over it. By
/// abstracting this out, we need not duplicate this memory, and we can
/// iterate over arrays in arbitrarily formatted streams. Elements are parsed
/// lazily on iteration, so there is no upfront cost associated with building
/// or copying a VarStreamArray, no matter how large it may be.
///
/// You create a VarStreamArray by specifying a ValueType and an Extractor type.
/// If you do not specify an Extractor type, you are expected to specialize
/// VarStreamArrayExtractor<T> for your ValueType.
///
/// The default extractor type is stateless, but by specializing
/// VarStreamArrayExtractor or defining your own custom extractor type and
/// adding the appropriate ContextType typedef to the class, you can pass a
/// context field during construction of the VarStreamArray that will be
/// passed to each call to extract.
///
template <typename Value, typename Extractor, typename WrappedCtx>
class VarStreamArrayBase {
typedef VarStreamArrayBase<Value, Extractor, WrappedCtx> MyType;
public:
typedef VarStreamArrayIterator<MyType, Value, Extractor, WrappedCtx> Iterator;
friend Iterator;
VarStreamArrayBase() = default;
VarStreamArrayBase(BinaryStreamRef Stream, const WrappedCtx &Ctx)
: Stream(Stream), Ctx(Ctx) {}
VarStreamArrayBase(const MyType &Other)
: Stream(Other.Stream), Ctx(Other.Ctx) {}
Iterator begin(bool *HadError = nullptr) const {
if (empty())
return end();
return Iterator(*this, Ctx, Stream, HadError);
}
bool valid() const { return Stream.valid(); }
Iterator end() const { return Iterator(Ctx); }
bool empty() const { return Stream.getLength() == 0; }
/// \brief given an offset into the array's underlying stream, return an
/// iterator to the record at that offset. This is considered unsafe
/// since the behavior is undefined if \p Offset does not refer to the
/// beginning of a valid record.
Iterator at(uint32_t Offset) const {
return Iterator(*this, Ctx, Stream.drop_front(Offset), nullptr, Offset);
}
BinaryStreamRef getUnderlyingStream() const { return Stream; }
private:
BinaryStreamRef Stream;
WrappedCtx Ctx;
};
template <typename Value, typename Extractor, typename Context>
class VarStreamArrayImpl
: public VarStreamArrayBase<Value, Extractor,
ContextWrapper<Value, Context>> {
typedef ContextWrapper<Value, Context> WrappedContext;
typedef VarStreamArrayImpl<Value, Extractor, Context> MyType;
typedef VarStreamArrayBase<Value, Extractor, WrappedContext> BaseType;
public:
typedef Context ContextType;
VarStreamArrayImpl() = default;
VarStreamArrayImpl(BinaryStreamRef Stream, Context &&Ctx)
: BaseType(Stream, WrappedContext(std::forward<Context>(Ctx))) {}
};
template <typename Value, typename Extractor>
class VarStreamArrayImpl<Value, Extractor, void>
: public VarStreamArrayBase<Value, Extractor, ContextWrapper<Value, void>> {
typedef ContextWrapper<Value, void> WrappedContext;
typedef VarStreamArrayImpl<Value, Extractor, void> MyType;
typedef VarStreamArrayBase<Value, Extractor, WrappedContext> BaseType;
public:
VarStreamArrayImpl() = default;
VarStreamArrayImpl(BinaryStreamRef Stream)
: BaseType(Stream, WrappedContext()) {}
};
template <typename Value, typename Extractor = VarStreamArrayExtractor<Value>>
using VarStreamArray =
VarStreamArrayImpl<Value, Extractor, typename Extractor::ContextType>;
template <typename T> class FixedStreamArrayIterator;
/// FixedStreamArray is similar to VarStreamArray, except with each record
/// having a fixed-length. As with VarStreamArray, there is no upfront
/// cost associated with building or copying a FixedStreamArray, as the
/// memory for each element is not read from the backing stream until that
/// element is iterated.
template <typename T> class FixedStreamArray {
friend class FixedStreamArrayIterator<T>;
public:
typedef FixedStreamArrayIterator<T> Iterator;
FixedStreamArray() = default;
explicit FixedStreamArray(BinaryStreamRef Stream) : Stream(Stream) {
assert(Stream.getLength() % sizeof(T) == 0);
}
bool operator==(const FixedStreamArray<T> &Other) const {
return Stream == Other.Stream;
}
bool operator!=(const FixedStreamArray<T> &Other) const {
return !(*this == Other);
}
FixedStreamArray &operator=(const FixedStreamArray &) = default;
const T &operator[](uint32_t Index) const {
assert(Index < size());
uint32_t Off = Index * sizeof(T);
ArrayRef<uint8_t> Data;
if (auto EC = Stream.readBytes(Off, sizeof(T), Data)) {
assert(false && "Unexpected failure reading from stream");
// This should never happen since we asserted that the stream length was
// an exact multiple of the element size.
consumeError(std::move(EC));
}
assert(llvm::alignmentAdjustment(Data.data(), alignof(T)) == 0);
return *reinterpret_cast<const T *>(Data.data());
}
uint32_t size() const { return Stream.getLength() / sizeof(T); }
bool empty() const { return size() == 0; }
FixedStreamArrayIterator<T> begin() const {
return FixedStreamArrayIterator<T>(*this, 0);
}
FixedStreamArrayIterator<T> end() const {
return FixedStreamArrayIterator<T>(*this, size());
}
BinaryStreamRef getUnderlyingStream() const { return Stream; }
private:
BinaryStreamRef Stream;
};
template <typename T>
class FixedStreamArrayIterator
: public iterator_facade_base<FixedStreamArrayIterator<T>,
std::random_access_iterator_tag, const T> {
public:
FixedStreamArrayIterator(const FixedStreamArray<T> &Array, uint32_t Index)
: Array(Array), Index(Index) {}
FixedStreamArrayIterator<T> &
operator=(const FixedStreamArrayIterator<T> &Other) {
Array = Other.Array;
Index = Other.Index;
return *this;
}
const T &operator*() const { return Array[Index]; }
const T &operator*() { return Array[Index]; }
bool operator==(const FixedStreamArrayIterator<T> &R) const {
assert(Array == R.Array);
return (Index == R.Index) && (Array == R.Array);
}
FixedStreamArrayIterator<T> &operator+=(std::ptrdiff_t N) {
Index += N;
return *this;
}
FixedStreamArrayIterator<T> &operator-=(std::ptrdiff_t N) {
assert(std::ptrdiff_t(Index) >= N);
Index -= N;
return *this;
}
std::ptrdiff_t operator-(const FixedStreamArrayIterator<T> &R) const {
assert(Array == R.Array);
assert(Index >= R.Index);
return Index - R.Index;
}
bool operator<(const FixedStreamArrayIterator<T> &RHS) const {
assert(Array == RHS.Array);
return Index < RHS.Index;
}
private:
FixedStreamArray<T> Array;
uint32_t Index;
};
} // namespace llvm
#endif // LLVM_SUPPORT_BINARYSTREAMARRAY_H