mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
a3f725f6cd
This (mostly) fixes https://bugs.llvm.org/show_bug.cgi?id=39771. BDCE currently detects instructions that don't have any demanded bits and replaces their uses with zero. However, if an instruction has multiple uses, then some of the uses may be dead (have no demanded bits) even though the instruction itself is still live. This patch extends DemandedBits/BDCE to detect such uses and replace them with zero. While this will not immediately render any instructions dead, it may lead to simplifications (in the motivating case, by converting a rotate into a simple shift), break dependencies, etc. The implementation tries to strike a balance between analysis power and complexity/memory usage. Originally I wanted to track demanded bits on a per-use level, but ultimately we're only really interested in whether a use is entirely dead or not. I'm using an extra set to track which uses are dead. However, as initially all uses are dead, I'm not storing uses those user is also dead. This case is checked separately instead. The previous attempt to land this lead to miscompiles, because cases where uses were initially dead but were later found to be live during further analysis were not always correctly removed from the DeadUses set. This is fixed now and the added test case demanstrates such an instance. Differential Revision: https://reviews.llvm.org/D55563 llvm-svn: 350188
489 lines
16 KiB
C++
489 lines
16 KiB
C++
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a demanded bits analysis. A demanded bit is one that
|
|
// contributes to a result; bits that are not demanded can be either zero or
|
|
// one without affecting control or data flow. For example in this sequence:
|
|
//
|
|
// %1 = add i32 %x, %y
|
|
// %2 = trunc i32 %1 to i16
|
|
//
|
|
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
|
|
// trunc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "demanded-bits"
|
|
|
|
char DemandedBitsWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
|
|
"Demanded bits analysis", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
|
|
"Demanded bits analysis", false, false)
|
|
|
|
DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
|
|
initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
|
DB->print(OS);
|
|
}
|
|
|
|
static bool isAlwaysLive(Instruction *I) {
|
|
return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
|
|
I->mayHaveSideEffects();
|
|
}
|
|
|
|
void DemandedBits::determineLiveOperandBits(
|
|
const Instruction *UserI, const Instruction *I, unsigned OperandNo,
|
|
const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
|
|
unsigned BitWidth = AB.getBitWidth();
|
|
|
|
// We're called once per operand, but for some instructions, we need to
|
|
// compute known bits of both operands in order to determine the live bits of
|
|
// either (when both operands are instructions themselves). We don't,
|
|
// however, want to do this twice, so we cache the result in APInts that live
|
|
// in the caller. For the two-relevant-operands case, both operand values are
|
|
// provided here.
|
|
auto ComputeKnownBits =
|
|
[&](unsigned BitWidth, const Value *V1, const Value *V2) {
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
Known = KnownBits(BitWidth);
|
|
computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
|
|
|
|
if (V2) {
|
|
Known2 = KnownBits(BitWidth);
|
|
computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
|
|
}
|
|
};
|
|
|
|
switch (UserI->getOpcode()) {
|
|
default: break;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
|
|
switch (II->getIntrinsicID()) {
|
|
default: break;
|
|
case Intrinsic::bswap:
|
|
// The alive bits of the input are the swapped alive bits of
|
|
// the output.
|
|
AB = AOut.byteSwap();
|
|
break;
|
|
case Intrinsic::bitreverse:
|
|
// The alive bits of the input are the reversed alive bits of
|
|
// the output.
|
|
AB = AOut.reverseBits();
|
|
break;
|
|
case Intrinsic::ctlz:
|
|
if (OperandNo == 0) {
|
|
// We need some output bits, so we need all bits of the
|
|
// input to the left of, and including, the leftmost bit
|
|
// known to be one.
|
|
ComputeKnownBits(BitWidth, I, nullptr);
|
|
AB = APInt::getHighBitsSet(BitWidth,
|
|
std::min(BitWidth, Known.countMaxLeadingZeros()+1));
|
|
}
|
|
break;
|
|
case Intrinsic::cttz:
|
|
if (OperandNo == 0) {
|
|
// We need some output bits, so we need all bits of the
|
|
// input to the right of, and including, the rightmost bit
|
|
// known to be one.
|
|
ComputeKnownBits(BitWidth, I, nullptr);
|
|
AB = APInt::getLowBitsSet(BitWidth,
|
|
std::min(BitWidth, Known.countMaxTrailingZeros()+1));
|
|
}
|
|
break;
|
|
case Intrinsic::fshl:
|
|
case Intrinsic::fshr: {
|
|
const APInt *SA;
|
|
if (OperandNo == 2) {
|
|
// Shift amount is modulo the bitwidth. For powers of two we have
|
|
// SA % BW == SA & (BW - 1).
|
|
if (isPowerOf2_32(BitWidth))
|
|
AB = BitWidth - 1;
|
|
} else if (match(II->getOperand(2), m_APInt(SA))) {
|
|
// Normalize to funnel shift left. APInt shifts of BitWidth are well-
|
|
// defined, so no need to special-case zero shifts here.
|
|
uint64_t ShiftAmt = SA->urem(BitWidth);
|
|
if (II->getIntrinsicID() == Intrinsic::fshr)
|
|
ShiftAmt = BitWidth - ShiftAmt;
|
|
|
|
if (OperandNo == 0)
|
|
AB = AOut.lshr(ShiftAmt);
|
|
else if (OperandNo == 1)
|
|
AB = AOut.shl(BitWidth - ShiftAmt);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
// Find the highest live output bit. We don't need any more input
|
|
// bits than that (adds, and thus subtracts, ripple only to the
|
|
// left).
|
|
AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
|
|
break;
|
|
case Instruction::Shl:
|
|
if (OperandNo == 0) {
|
|
const APInt *ShiftAmtC;
|
|
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
|
|
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
|
|
AB = AOut.lshr(ShiftAmt);
|
|
|
|
// If the shift is nuw/nsw, then the high bits are not dead
|
|
// (because we've promised that they *must* be zero).
|
|
const ShlOperator *S = cast<ShlOperator>(UserI);
|
|
if (S->hasNoSignedWrap())
|
|
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
|
|
else if (S->hasNoUnsignedWrap())
|
|
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::LShr:
|
|
if (OperandNo == 0) {
|
|
const APInt *ShiftAmtC;
|
|
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
|
|
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
|
|
AB = AOut.shl(ShiftAmt);
|
|
|
|
// If the shift is exact, then the low bits are not dead
|
|
// (they must be zero).
|
|
if (cast<LShrOperator>(UserI)->isExact())
|
|
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::AShr:
|
|
if (OperandNo == 0) {
|
|
const APInt *ShiftAmtC;
|
|
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
|
|
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
|
|
AB = AOut.shl(ShiftAmt);
|
|
// Because the high input bit is replicated into the
|
|
// high-order bits of the result, if we need any of those
|
|
// bits, then we must keep the highest input bit.
|
|
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
|
|
.getBoolValue())
|
|
AB.setSignBit();
|
|
|
|
// If the shift is exact, then the low bits are not dead
|
|
// (they must be zero).
|
|
if (cast<AShrOperator>(UserI)->isExact())
|
|
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::And:
|
|
AB = AOut;
|
|
|
|
// For bits that are known zero, the corresponding bits in the
|
|
// other operand are dead (unless they're both zero, in which
|
|
// case they can't both be dead, so just mark the LHS bits as
|
|
// dead).
|
|
if (OperandNo == 0) {
|
|
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
|
|
AB &= ~Known2.Zero;
|
|
} else {
|
|
if (!isa<Instruction>(UserI->getOperand(0)))
|
|
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
|
|
AB &= ~(Known.Zero & ~Known2.Zero);
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
AB = AOut;
|
|
|
|
// For bits that are known one, the corresponding bits in the
|
|
// other operand are dead (unless they're both one, in which
|
|
// case they can't both be dead, so just mark the LHS bits as
|
|
// dead).
|
|
if (OperandNo == 0) {
|
|
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
|
|
AB &= ~Known2.One;
|
|
} else {
|
|
if (!isa<Instruction>(UserI->getOperand(0)))
|
|
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
|
|
AB &= ~(Known.One & ~Known2.One);
|
|
}
|
|
break;
|
|
case Instruction::Xor:
|
|
case Instruction::PHI:
|
|
AB = AOut;
|
|
break;
|
|
case Instruction::Trunc:
|
|
AB = AOut.zext(BitWidth);
|
|
break;
|
|
case Instruction::ZExt:
|
|
AB = AOut.trunc(BitWidth);
|
|
break;
|
|
case Instruction::SExt:
|
|
AB = AOut.trunc(BitWidth);
|
|
// Because the high input bit is replicated into the
|
|
// high-order bits of the result, if we need any of those
|
|
// bits, then we must keep the highest input bit.
|
|
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
|
|
AOut.getBitWidth() - BitWidth))
|
|
.getBoolValue())
|
|
AB.setSignBit();
|
|
break;
|
|
case Instruction::Select:
|
|
if (OperandNo != 0)
|
|
AB = AOut;
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
if (OperandNo == 0)
|
|
AB = AOut;
|
|
break;
|
|
case Instruction::InsertElement:
|
|
case Instruction::ShuffleVector:
|
|
if (OperandNo == 0 || OperandNo == 1)
|
|
AB = AOut;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
DB.emplace(F, AC, DT);
|
|
return false;
|
|
}
|
|
|
|
void DemandedBitsWrapperPass::releaseMemory() {
|
|
DB.reset();
|
|
}
|
|
|
|
void DemandedBits::performAnalysis() {
|
|
if (Analyzed)
|
|
// Analysis already completed for this function.
|
|
return;
|
|
Analyzed = true;
|
|
|
|
Visited.clear();
|
|
AliveBits.clear();
|
|
DeadUses.clear();
|
|
|
|
SmallVector<Instruction*, 128> Worklist;
|
|
|
|
// Collect the set of "root" instructions that are known live.
|
|
for (Instruction &I : instructions(F)) {
|
|
if (!isAlwaysLive(&I))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
|
|
// For integer-valued instructions, set up an initial empty set of alive
|
|
// bits and add the instruction to the work list. For other instructions
|
|
// add their operands to the work list (for integer values operands, mark
|
|
// all bits as live).
|
|
Type *T = I.getType();
|
|
if (T->isIntOrIntVectorTy()) {
|
|
if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
|
|
Worklist.push_back(&I);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Non-integer-typed instructions...
|
|
for (Use &OI : I.operands()) {
|
|
if (Instruction *J = dyn_cast<Instruction>(OI)) {
|
|
Type *T = J->getType();
|
|
if (T->isIntOrIntVectorTy())
|
|
AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
|
|
Worklist.push_back(J);
|
|
}
|
|
}
|
|
// To save memory, we don't add I to the Visited set here. Instead, we
|
|
// check isAlwaysLive on every instruction when searching for dead
|
|
// instructions later (we need to check isAlwaysLive for the
|
|
// integer-typed instructions anyway).
|
|
}
|
|
|
|
// Propagate liveness backwards to operands.
|
|
while (!Worklist.empty()) {
|
|
Instruction *UserI = Worklist.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
|
|
APInt AOut;
|
|
if (UserI->getType()->isIntOrIntVectorTy()) {
|
|
AOut = AliveBits[UserI];
|
|
LLVM_DEBUG(dbgs() << " Alive Out: 0x"
|
|
<< Twine::utohexstr(AOut.getLimitedValue()));
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
if (!UserI->getType()->isIntOrIntVectorTy())
|
|
Visited.insert(UserI);
|
|
|
|
KnownBits Known, Known2;
|
|
// Compute the set of alive bits for each operand. These are anded into the
|
|
// existing set, if any, and if that changes the set of alive bits, the
|
|
// operand is added to the work-list.
|
|
for (Use &OI : UserI->operands()) {
|
|
if (Instruction *I = dyn_cast<Instruction>(OI)) {
|
|
Type *T = I->getType();
|
|
if (T->isIntOrIntVectorTy()) {
|
|
unsigned BitWidth = T->getScalarSizeInBits();
|
|
APInt AB = APInt::getAllOnesValue(BitWidth);
|
|
if (UserI->getType()->isIntOrIntVectorTy() && !AOut &&
|
|
!isAlwaysLive(UserI)) {
|
|
// If all bits of the output are dead, then all bits of the input
|
|
// are also dead.
|
|
AB = APInt(BitWidth, 0);
|
|
} else {
|
|
// Bits of each operand that are used to compute alive bits of the
|
|
// output are alive, all others are dead.
|
|
determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
|
|
Known, Known2);
|
|
|
|
// Keep track of uses which have no demanded bits.
|
|
if (AB.isNullValue())
|
|
DeadUses.insert(&OI);
|
|
else
|
|
DeadUses.erase(&OI);
|
|
}
|
|
|
|
// If we've added to the set of alive bits (or the operand has not
|
|
// been previously visited), then re-queue the operand to be visited
|
|
// again.
|
|
APInt ABPrev(BitWidth, 0);
|
|
auto ABI = AliveBits.find(I);
|
|
if (ABI != AliveBits.end())
|
|
ABPrev = ABI->second;
|
|
|
|
APInt ABNew = AB | ABPrev;
|
|
if (ABNew != ABPrev || ABI == AliveBits.end()) {
|
|
AliveBits[I] = std::move(ABNew);
|
|
Worklist.push_back(I);
|
|
}
|
|
} else if (!Visited.count(I)) {
|
|
Worklist.push_back(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt DemandedBits::getDemandedBits(Instruction *I) {
|
|
performAnalysis();
|
|
|
|
auto Found = AliveBits.find(I);
|
|
if (Found != AliveBits.end())
|
|
return Found->second;
|
|
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
return APInt::getAllOnesValue(
|
|
DL.getTypeSizeInBits(I->getType()->getScalarType()));
|
|
}
|
|
|
|
bool DemandedBits::isInstructionDead(Instruction *I) {
|
|
performAnalysis();
|
|
|
|
return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
|
|
!isAlwaysLive(I);
|
|
}
|
|
|
|
bool DemandedBits::isUseDead(Use *U) {
|
|
// We only track integer uses, everything else is assumed live.
|
|
if (!(*U)->getType()->isIntOrIntVectorTy())
|
|
return false;
|
|
|
|
// Uses by always-live instructions are never dead.
|
|
Instruction *UserI = cast<Instruction>(U->getUser());
|
|
if (isAlwaysLive(UserI))
|
|
return false;
|
|
|
|
performAnalysis();
|
|
if (DeadUses.count(U))
|
|
return true;
|
|
|
|
// If no output bits are demanded, no input bits are demanded and the use
|
|
// is dead. These uses might not be explicitly present in the DeadUses map.
|
|
if (UserI->getType()->isIntOrIntVectorTy()) {
|
|
auto Found = AliveBits.find(UserI);
|
|
if (Found != AliveBits.end() && Found->second.isNullValue())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void DemandedBits::print(raw_ostream &OS) {
|
|
performAnalysis();
|
|
for (auto &KV : AliveBits) {
|
|
OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
|
|
<< " for " << *KV.first << '\n';
|
|
}
|
|
}
|
|
|
|
FunctionPass *llvm::createDemandedBitsWrapperPass() {
|
|
return new DemandedBitsWrapperPass();
|
|
}
|
|
|
|
AnalysisKey DemandedBitsAnalysis::Key;
|
|
|
|
DemandedBits DemandedBitsAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
return DemandedBits(F, AC, DT);
|
|
}
|
|
|
|
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<DemandedBitsAnalysis>(F).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|