1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Transforms/Scalar/LoopUnswitch.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

1528 lines
60 KiB
C++

//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to multiple loops. For example, it turns the left into the right code:
//
// for (...) if (lic)
// A for (...)
// if (lic) A; B; C
// B else
// C for (...)
// A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <algorithm>
#include <map>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "loop-unswitch"
STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards, "Number of guards unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts, "Total number of instructions analyzed");
// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
cl::init(100), cl::Hidden);
namespace {
class LUAnalysisCache {
typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
UnswitchedValsMap;
typedef UnswitchedValsMap::iterator UnswitchedValsIt;
struct LoopProperties {
unsigned CanBeUnswitchedCount;
unsigned WasUnswitchedCount;
unsigned SizeEstimation;
UnswitchedValsMap UnswitchedVals;
};
// Here we use std::map instead of DenseMap, since we need to keep valid
// LoopProperties pointer for current loop for better performance.
typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
typedef LoopPropsMap::iterator LoopPropsMapIt;
LoopPropsMap LoopsProperties;
UnswitchedValsMap *CurLoopInstructions;
LoopProperties *CurrentLoopProperties;
// A loop unswitching with an estimated cost above this threshold
// is not performed. MaxSize is turned into unswitching quota for
// the current loop, and reduced correspondingly, though note that
// the quota is returned by releaseMemory() when the loop has been
// processed, so that MaxSize will return to its previous
// value. So in most cases MaxSize will equal the Threshold flag
// when a new loop is processed. An exception to that is that
// MaxSize will have a smaller value while processing nested loops
// that were introduced due to loop unswitching of an outer loop.
//
// FIXME: The way that MaxSize works is subtle and depends on the
// pass manager processing loops and calling releaseMemory() in a
// specific order. It would be good to find a more straightforward
// way of doing what MaxSize does.
unsigned MaxSize;
public:
LUAnalysisCache()
: CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
MaxSize(Threshold) {}
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
AssumptionCache *AC);
// Clean all data related to given loop.
void forgetLoop(const Loop *L);
// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void setUnswitched(const SwitchInst *SI, const Value *V);
// Check was this case value unswitched before or not.
bool isUnswitched(const SwitchInst *SI, const Value *V);
// Returns true if another unswitching could be done within the cost
// threshold.
bool CostAllowsUnswitching();
// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void cloneData(const Loop *NewLoop, const Loop *OldLoop,
const ValueToValueMapTy &VMap);
};
class LoopUnswitch : public LoopPass {
LoopInfo *LI; // Loop information
LPPassManager *LPM;
AssumptionCache *AC;
// Used to check if second loop needs processing after
// RewriteLoopBodyWithConditionConstant rewrites first loop.
std::vector<Loop*> LoopProcessWorklist;
LUAnalysisCache BranchesInfo;
bool OptimizeForSize;
bool redoLoop;
Loop *currentLoop;
DominatorTree *DT;
BasicBlock *loopHeader;
BasicBlock *loopPreheader;
bool SanitizeMemory;
LoopSafetyInfo SafetyInfo;
// LoopBlocks contains all of the basic blocks of the loop, including the
// preheader of the loop, the body of the loop, and the exit blocks of the
// loop, in that order.
std::vector<BasicBlock*> LoopBlocks;
// NewBlocks contained cloned copy of basic blocks from LoopBlocks.
std::vector<BasicBlock*> NewBlocks;
bool hasBranchDivergence;
public:
static char ID; // Pass ID, replacement for typeid
explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false) :
LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
loopPreheader(nullptr), hasBranchDivergence(hasBranchDivergence) {
initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
bool processCurrentLoop();
bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
if (hasBranchDivergence)
AU.addRequired<DivergenceAnalysis>();
getLoopAnalysisUsage(AU);
}
private:
void releaseMemory() override {
BranchesInfo.forgetLoop(currentLoop);
}
void initLoopData() {
loopHeader = currentLoop->getHeader();
loopPreheader = currentLoop->getLoopPreheader();
}
/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void SplitExitEdges(Loop *L,
const SmallVectorImpl<BasicBlock *> &ExitBlocks);
bool TryTrivialLoopUnswitch(bool &Changed);
bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
TerminatorInst *TI = nullptr);
void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
BasicBlock *ExitBlock, TerminatorInst *TI);
void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
TerminatorInst *TI);
void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val, bool isEqual);
void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
Instruction *InsertPt,
TerminatorInst *TI);
void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
/// Given that the Invariant is not equal to Val. Simplify instructions
/// in the loop.
Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
Constant *Val);
};
}
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
AssumptionCache *AC) {
LoopPropsMapIt PropsIt;
bool Inserted;
std::tie(PropsIt, Inserted) =
LoopsProperties.insert(std::make_pair(L, LoopProperties()));
LoopProperties &Props = PropsIt->second;
if (Inserted) {
// New loop.
// Limit the number of instructions to avoid causing significant code
// expansion, and the number of basic blocks, to avoid loops with
// large numbers of branches which cause loop unswitching to go crazy.
// This is a very ad-hoc heuristic.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
// FIXME: This is overly conservative because it does not take into
// consideration code simplification opportunities and code that can
// be shared by the resultant unswitched loops.
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
++I)
Metrics.analyzeBasicBlock(*I, TTI, EphValues);
Props.SizeEstimation = Metrics.NumInsts;
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
Props.WasUnswitchedCount = 0;
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
if (Metrics.notDuplicatable) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< L->getHeader()->getName() << ", contents cannot be "
<< "duplicated!\n");
return false;
}
}
// Be careful. This links are good only before new loop addition.
CurrentLoopProperties = &Props;
CurLoopInstructions = &Props.UnswitchedVals;
return true;
}
// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop *L) {
LoopPropsMapIt LIt = LoopsProperties.find(L);
if (LIt != LoopsProperties.end()) {
LoopProperties &Props = LIt->second;
MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
Props.SizeEstimation;
LoopsProperties.erase(LIt);
}
CurrentLoopProperties = nullptr;
CurLoopInstructions = nullptr;
}
// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
(*CurLoopInstructions)[SI].insert(V);
}
// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
return (*CurLoopInstructions)[SI].count(V);
}
bool LUAnalysisCache::CostAllowsUnswitching() {
return CurrentLoopProperties->CanBeUnswitchedCount > 0;
}
// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
const ValueToValueMapTy &VMap) {
LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
LoopProperties &OldLoopProps = *CurrentLoopProperties;
UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
// Reallocate "can-be-unswitched quota"
--OldLoopProps.CanBeUnswitchedCount;
++OldLoopProps.WasUnswitchedCount;
NewLoopProps.WasUnswitchedCount = 0;
unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
NewLoopProps.CanBeUnswitchedCount = Quota / 2;
OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
// Clone unswitched values info:
// for new loop switches we clone info about values that was
// already unswitched and has redundant successors.
for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
const SwitchInst *OldInst = I->first;
Value *NewI = VMap.lookup(OldInst);
const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
}
}
char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
return new LoopUnswitch(Os, hasBranchDivergence);
}
/// Operator chain lattice.
enum OperatorChain {
OC_OpChainNone, ///< There is no operator.
OC_OpChainOr, ///< There are only ORs.
OC_OpChainAnd, ///< There are only ANDs.
OC_OpChainMixed ///< There are ANDs and ORs.
};
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant. Otherwise, return null.
//
/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
/// mixed operator chain, as we can not reliably find a value which will simplify
/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
/// to simplify the chain.
///
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
/// simplify the condition itself to a loop variant condition, but at the
/// cost of creating an entirely new loop.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
OperatorChain &ParentChain,
DenseMap<Value *, Value *> &Cache) {
auto CacheIt = Cache.find(Cond);
if (CacheIt != Cache.end())
return CacheIt->second;
// We started analyze new instruction, increment scanned instructions counter.
++TotalInsts;
// We can never unswitch on vector conditions.
if (Cond->getType()->isVectorTy())
return nullptr;
// Constants should be folded, not unswitched on!
if (isa<Constant>(Cond)) return nullptr;
// TODO: Handle: br (VARIANT|INVARIANT).
// Hoist simple values out.
if (L->makeLoopInvariant(Cond, Changed)) {
Cache[Cond] = Cond;
return Cond;
}
// Walk up the operator chain to find partial invariant conditions.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
if (BO->getOpcode() == Instruction::And ||
BO->getOpcode() == Instruction::Or) {
// Given the previous operator, compute the current operator chain status.
OperatorChain NewChain;
switch (ParentChain) {
case OC_OpChainNone:
NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
OC_OpChainOr;
break;
case OC_OpChainOr:
NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
OC_OpChainMixed;
break;
case OC_OpChainAnd:
NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
OC_OpChainMixed;
break;
case OC_OpChainMixed:
NewChain = OC_OpChainMixed;
break;
}
// If we reach a Mixed state, we do not want to keep walking up as we can not
// reliably find a value that will simplify the chain. With this check, we
// will return null on the first sight of mixed chain and the caller will
// either backtrack to find partial LIV in other operand or return null.
if (NewChain != OC_OpChainMixed) {
// Update the current operator chain type before we search up the chain.
ParentChain = NewChain;
// If either the left or right side is invariant, we can unswitch on this,
// which will cause the branch to go away in one loop and the condition to
// simplify in the other one.
if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
ParentChain, Cache)) {
Cache[Cond] = LHS;
return LHS;
}
// We did not manage to find a partial LIV in operand(0). Backtrack and try
// operand(1).
ParentChain = NewChain;
if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
ParentChain, Cache)) {
Cache[Cond] = RHS;
return RHS;
}
}
}
Cache[Cond] = nullptr;
return nullptr;
}
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant along with the operator chain type.
/// Otherwise, return null.
static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
Loop *L,
bool &Changed) {
DenseMap<Value *, Value *> Cache;
OperatorChain OpChain = OC_OpChainNone;
Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
// In case we do find a LIV, it can not be obtained by walking up a mixed
// operator chain.
assert((!FCond || OpChain != OC_OpChainMixed) &&
"Do not expect a partial LIV with mixed operator chain");
return {FCond, OpChain};
}
bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
if (skipLoop(L))
return false;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*L->getHeader()->getParent());
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
LPM = &LPM_Ref;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
currentLoop = L;
Function *F = currentLoop->getHeader()->getParent();
SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
if (SanitizeMemory)
computeLoopSafetyInfo(&SafetyInfo, L);
bool Changed = false;
do {
assert(currentLoop->isLCSSAForm(*DT));
redoLoop = false;
Changed |= processCurrentLoop();
} while(redoLoop);
// FIXME: Reconstruct dom info, because it is not preserved properly.
if (Changed)
DT->recalculate(*F);
return Changed;
}
// Return true if the BasicBlock BB is unreachable from the loop header.
// Return false, otherwise.
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
auto *Node = DT->getNode(BB)->getIDom();
BasicBlock *DomBB = Node->getBlock();
while (currentLoop->contains(DomBB)) {
BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
Node = DT->getNode(DomBB)->getIDom();
DomBB = Node->getBlock();
if (!BInst || !BInst->isConditional())
continue;
Value *Cond = BInst->getCondition();
if (!isa<ConstantInt>(Cond))
continue;
BasicBlock *UnreachableSucc =
Cond == ConstantInt::getTrue(Cond->getContext())
? BInst->getSuccessor(1)
: BInst->getSuccessor(0);
if (DT->dominates(UnreachableSucc, BB))
return true;
}
return false;
}
/// Do actual work and unswitch loop if possible and profitable.
bool LoopUnswitch::processCurrentLoop() {
bool Changed = false;
initLoopData();
// If LoopSimplify was unable to form a preheader, don't do any unswitching.
if (!loopPreheader)
return false;
// Loops with indirectbr cannot be cloned.
if (!currentLoop->isSafeToClone())
return false;
// Without dedicated exits, splitting the exit edge may fail.
if (!currentLoop->hasDedicatedExits())
return false;
LLVMContext &Context = loopHeader->getContext();
// Analyze loop cost, and stop unswitching if loop content can not be duplicated.
if (!BranchesInfo.countLoop(
currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*currentLoop->getHeader()->getParent()),
AC))
return false;
// Try trivial unswitch first before loop over other basic blocks in the loop.
if (TryTrivialLoopUnswitch(Changed)) {
return true;
}
// Run through the instructions in the loop, keeping track of three things:
//
// - That we do not unswitch loops containing convergent operations, as we
// might be making them control dependent on the unswitch value when they
// were not before.
// FIXME: This could be refined to only bail if the convergent operation is
// not already control-dependent on the unswitch value.
//
// - That basic blocks in the loop contain invokes whose predecessor edges we
// cannot split.
//
// - The set of guard intrinsics encountered (these are non terminator
// instructions that are also profitable to be unswitched).
SmallVector<IntrinsicInst *, 4> Guards;
for (const auto BB : currentLoop->blocks()) {
for (auto &I : *BB) {
auto CS = CallSite(&I);
if (!CS) continue;
if (CS.hasFnAttr(Attribute::Convergent))
return false;
if (auto *II = dyn_cast<InvokeInst>(&I))
if (!II->getUnwindDest()->canSplitPredecessors())
return false;
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::experimental_guard)
Guards.push_back(II);
}
}
// Do not do non-trivial unswitch while optimizing for size.
// FIXME: Use Function::optForSize().
if (OptimizeForSize ||
loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
return false;
for (IntrinsicInst *Guard : Guards) {
Value *LoopCond =
FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
if (LoopCond &&
UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
// NB! Unswitching (if successful) could have erased some of the
// instructions in Guards leaving dangling pointers there. This is fine
// because we're returning now, and won't look at Guards again.
++NumGuards;
return true;
}
}
// Loop over all of the basic blocks in the loop. If we find an interior
// block that is branching on a loop-invariant condition, we can unswitch this
// loop.
for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end(); I != E; ++I) {
TerminatorInst *TI = (*I)->getTerminator();
// Unswitching on a potentially uninitialized predicate is not
// MSan-friendly. Limit this to the cases when the original predicate is
// guaranteed to execute, to avoid creating a use-of-uninitialized-value
// in the code that did not have one.
// This is a workaround for the discrepancy between LLVM IR and MSan
// semantics. See PR28054 for more details.
if (SanitizeMemory &&
!isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
// Some branches may be rendered unreachable because of previous
// unswitching.
// Unswitch only those branches that are reachable.
if (isUnreachableDueToPreviousUnswitching(*I))
continue;
// If this isn't branching on an invariant condition, we can't unswitch
// it.
if (BI->isConditional()) {
// See if this, or some part of it, is loop invariant. If so, we can
// unswitch on it if we desire.
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed).first;
if (LoopCond &&
UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
++NumBranches;
return true;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Value *SC = SI->getCondition();
Value *LoopCond;
OperatorChain OpChain;
std::tie(LoopCond, OpChain) =
FindLIVLoopCondition(SC, currentLoop, Changed);
unsigned NumCases = SI->getNumCases();
if (LoopCond && NumCases) {
// Find a value to unswitch on:
// FIXME: this should chose the most expensive case!
// FIXME: scan for a case with a non-critical edge?
Constant *UnswitchVal = nullptr;
// Find a case value such that at least one case value is unswitched
// out.
if (OpChain == OC_OpChainAnd) {
// If the chain only has ANDs and the switch has a case value of 0.
// Dropping in a 0 to the chain will unswitch out the 0-casevalue.
auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
if (BranchesInfo.isUnswitched(SI, AllZero))
continue;
// We are unswitching 0 out.
UnswitchVal = AllZero;
} else if (OpChain == OC_OpChainOr) {
// If the chain only has ORs and the switch has a case value of ~0.
// Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
if (BranchesInfo.isUnswitched(SI, AllOne))
continue;
// We are unswitching ~0 out.
UnswitchVal = AllOne;
} else {
assert(OpChain == OC_OpChainNone &&
"Expect to unswitch on trivial chain");
// Do not process same value again and again.
// At this point we have some cases already unswitched and
// some not yet unswitched. Let's find the first not yet unswitched one.
for (auto Case : SI->cases()) {
Constant *UnswitchValCandidate = Case.getCaseValue();
if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
UnswitchVal = UnswitchValCandidate;
break;
}
}
}
if (!UnswitchVal)
continue;
if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
++NumSwitches;
// In case of a full LIV, UnswitchVal is the value we unswitched out.
// In case of a partial LIV, we only unswitch when its an AND-chain
// or OR-chain. In both cases switch input value simplifies to
// UnswitchVal.
BranchesInfo.setUnswitched(SI, UnswitchVal);
return true;
}
}
}
// Scan the instructions to check for unswitchable values.
for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
BBI != E; ++BBI)
if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed).first;
if (LoopCond && UnswitchIfProfitable(LoopCond,
ConstantInt::getTrue(Context))) {
++NumSelects;
return true;
}
}
}
return Changed;
}
/// Check to see if all paths from BB exit the loop with no side effects
/// (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
BasicBlock *&ExitBB,
std::set<BasicBlock*> &Visited) {
if (!Visited.insert(BB).second) {
// Already visited. Without more analysis, this could indicate an infinite
// loop.
return false;
}
if (!L->contains(BB)) {
// Otherwise, this is a loop exit, this is fine so long as this is the
// first exit.
if (ExitBB) return false;
ExitBB = BB;
return true;
}
// Otherwise, this is an unvisited intra-loop node. Check all successors.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
// Check to see if the successor is a trivial loop exit.
if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
return false;
}
// Okay, everything after this looks good, check to make sure that this block
// doesn't include any side effects.
for (Instruction &I : *BB)
if (I.mayHaveSideEffects())
return false;
return true;
}
/// Return true if the specified block unconditionally leads to an exit from
/// the specified loop, and has no side-effects in the process. If so, return
/// the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
std::set<BasicBlock*> Visited;
Visited.insert(L->getHeader()); // Branches to header make infinite loops.
BasicBlock *ExitBB = nullptr;
if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
return ExitBB;
return nullptr;
}
/// We have found that we can unswitch currentLoop when LoopCond == Val to
/// simplify the loop. If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
TerminatorInst *TI) {
// Check to see if it would be profitable to unswitch current loop.
if (!BranchesInfo.CostAllowsUnswitching()) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName()
<< " at non-trivial condition '" << *Val
<< "' == " << *LoopCond << "\n"
<< ". Cost too high.\n");
return false;
}
if (hasBranchDivergence &&
getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName()
<< " at non-trivial condition '" << *Val
<< "' == " << *LoopCond << "\n"
<< ". Condition is divergent.\n");
return false;
}
UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
return true;
}
/// Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
LoopInfo *LI, LPPassManager *LPM) {
Loop &New = *new Loop();
if (PL)
PL->addChildLoop(&New);
else
LI->addTopLevelLoop(&New);
LPM->addLoop(New);
// Add all of the blocks in L to the new loop.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
if (LI->getLoopFor(*I) == L)
New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
// Add all of the subloops to the new loop.
for (Loop *I : *L)
CloneLoop(I, &New, VM, LI, LPM);
return &New;
}
/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
/// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
Instruction *InsertPt,
TerminatorInst *TI) {
// Insert a conditional branch on LIC to the two preheaders. The original
// code is the true version and the new code is the false version.
Value *BranchVal = LIC;
bool Swapped = false;
if (!isa<ConstantInt>(Val) ||
Val->getType() != Type::getInt1Ty(LIC->getContext()))
BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
else if (Val != ConstantInt::getTrue(Val->getContext())) {
// We want to enter the new loop when the condition is true.
std::swap(TrueDest, FalseDest);
Swapped = true;
}
// Insert the new branch.
BranchInst *BI =
IRBuilder<>(InsertPt).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
if (Swapped)
BI->swapProfMetadata();
// If either edge is critical, split it. This helps preserve LoopSimplify
// form for enclosing loops.
auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
SplitCriticalEdge(BI, 0, Options);
SplitCriticalEdge(BI, 1, Options);
}
/// Given a loop that has a trivial unswitchable condition in it (a cond branch
/// from its header block to its latch block, where the path through the loop
/// that doesn't execute its body has no side-effects), unswitch it. This
/// doesn't involve any code duplication, just moving the conditional branch
/// outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
BasicBlock *ExitBlock,
TerminatorInst *TI) {
DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function "
<< L->getHeader()->getParent()->getName() << " on cond: " << *Val
<< " == " << *Cond << "\n");
// First step, split the preheader, so that we know that there is a safe place
// to insert the conditional branch. We will change loopPreheader to have a
// conditional branch on Cond.
BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
// Now that we have a place to insert the conditional branch, create a place
// to branch to: this is the exit block out of the loop that we should
// short-circuit to.
// Split this block now, so that the loop maintains its exit block, and so
// that the jump from the preheader can execute the contents of the exit block
// without actually branching to it (the exit block should be dominated by the
// loop header, not the preheader).
assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
// Okay, now we have a position to branch from and a position to branch to,
// insert the new conditional branch.
EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
loopPreheader->getTerminator(), TI);
LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
loopPreheader->getTerminator()->eraseFromParent();
// We need to reprocess this loop, it could be unswitched again.
redoLoop = true;
// Now that we know that the loop is never entered when this condition is a
// particular value, rewrite the loop with this info. We know that this will
// at least eliminate the old branch.
RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
++NumTrivial;
}
/// Check if the first non-constant condition starting from the loop header is
/// a trivial unswitch condition: that is, a condition controls whether or not
/// the loop does anything at all. If it is a trivial condition, unswitching
/// produces no code duplications (equivalently, it produces a simpler loop and
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
/// condition.
bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
BasicBlock *CurrentBB = currentLoop->getHeader();
TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
LLVMContext &Context = CurrentBB->getContext();
// If loop header has only one reachable successor (currently via an
// unconditional branch or constant foldable conditional branch, but
// should also consider adding constant foldable switch instruction in
// future), we should keep looking for trivial condition candidates in
// the successor as well. An alternative is to constant fold conditions
// and merge successors into loop header (then we only need to check header's
// terminator). The reason for not doing this in LoopUnswitch pass is that
// it could potentially break LoopPassManager's invariants. Folding dead
// branches could either eliminate the current loop or make other loops
// unreachable. LCSSA form might also not be preserved after deleting
// branches. The following code keeps traversing loop header's successors
// until it finds the trivial condition candidate (condition that is not a
// constant). Since unswitching generates branches with constant conditions,
// this scenario could be very common in practice.
SmallSet<BasicBlock*, 8> Visited;
while (true) {
// If we exit loop or reach a previous visited block, then
// we can not reach any trivial condition candidates (unfoldable
// branch instructions or switch instructions) and no unswitch
// can happen. Exit and return false.
if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
return false;
// Check if this loop will execute any side-effecting instructions (e.g.
// stores, calls, volatile loads) in the part of the loop that the code
// *would* execute. Check the header first.
for (Instruction &I : *CurrentBB)
if (I.mayHaveSideEffects())
return false;
if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
if (BI->isUnconditional()) {
CurrentBB = BI->getSuccessor(0);
} else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
CurrentBB = BI->getSuccessor(0);
} else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
CurrentBB = BI->getSuccessor(1);
} else {
// Found a trivial condition candidate: non-foldable conditional branch.
break;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
// At this point, any constant-foldable instructions should have probably
// been folded.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (!Cond)
break;
// Find the target block we are definitely going to.
CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
} else {
// We do not understand these terminator instructions.
break;
}
CurrentTerm = CurrentBB->getTerminator();
}
// CondVal is the condition that controls the trivial condition.
// LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
Constant *CondVal = nullptr;
BasicBlock *LoopExitBB = nullptr;
if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
// If this isn't branching on an invariant condition, we can't unswitch it.
if (!BI->isConditional())
return false;
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed).first;
// Unswitch only if the trivial condition itself is an LIV (not
// partial LIV which could occur in and/or)
if (!LoopCond || LoopCond != BI->getCondition())
return false;
// Check to see if a successor of the branch is guaranteed to
// exit through a unique exit block without having any
// side-effects. If so, determine the value of Cond that causes
// it to do this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
CondVal = ConstantInt::getTrue(Context);
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
CondVal = ConstantInt::getFalse(Context);
}
// If we didn't find a single unique LoopExit block, or if the loop exit
// block contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
CurrentTerm);
++NumBranches;
return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
// If this isn't switching on an invariant condition, we can't unswitch it.
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed).first;
// Unswitch only if the trivial condition itself is an LIV (not
// partial LIV which could occur in and/or)
if (!LoopCond || LoopCond != SI->getCondition())
return false;
// Check to see if a successor of the switch is guaranteed to go to the
// latch block or exit through a one exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this.
// Note that we can't trivially unswitch on the default case or
// on already unswitched cases.
for (auto Case : SI->cases()) {
BasicBlock *LoopExitCandidate;
if ((LoopExitCandidate =
isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
// Okay, we found a trivial case, remember the value that is trivial.
ConstantInt *CaseVal = Case.getCaseValue();
// Check that it was not unswitched before, since already unswitched
// trivial vals are looks trivial too.
if (BranchesInfo.isUnswitched(SI, CaseVal))
continue;
LoopExitBB = LoopExitCandidate;
CondVal = CaseVal;
break;
}
}
// If we didn't find a single unique LoopExit block, or if the loop exit
// block contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
nullptr);
// We are only unswitching full LIV.
BranchesInfo.setUnswitched(SI, CondVal);
++NumSwitches;
return true;
}
return false;
}
/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
const SmallVectorImpl<BasicBlock *> &ExitBlocks){
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
pred_end(ExitBlock));
// Although SplitBlockPredecessors doesn't preserve loop-simplify in
// general, if we call it on all predecessors of all exits then it does.
SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
/*PreserveLCSSA*/ true);
}
}
/// We determined that the loop is profitable to unswitch when LIC equal Val.
/// Split it into loop versions and test the condition outside of either loop.
/// Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
Loop *L, TerminatorInst *TI) {
Function *F = loopHeader->getParent();
DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << F->getName()
<< " when '" << *Val << "' == " << *LIC << "\n");
if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
SEWP->getSE().forgetLoop(L);
LoopBlocks.clear();
NewBlocks.clear();
// First step, split the preheader and exit blocks, and add these blocks to
// the LoopBlocks list.
BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
LoopBlocks.push_back(NewPreheader);
// We want the loop to come after the preheader, but before the exit blocks.
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Split all of the edges from inside the loop to their exit blocks. Update
// the appropriate Phi nodes as we do so.
SplitExitEdges(L, ExitBlocks);
// The exit blocks may have been changed due to edge splitting, recompute.
ExitBlocks.clear();
L->getUniqueExitBlocks(ExitBlocks);
// Add exit blocks to the loop blocks.
LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
// Next step, clone all of the basic blocks that make up the loop (including
// the loop preheader and exit blocks), keeping track of the mapping between
// the instructions and blocks.
NewBlocks.reserve(LoopBlocks.size());
ValueToValueMapTy VMap;
for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
NewBlocks.push_back(NewBB);
VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
}
// Splice the newly inserted blocks into the function right before the
// original preheader.
F->getBasicBlockList().splice(NewPreheader->getIterator(),
F->getBasicBlockList(),
NewBlocks[0]->getIterator(), F->end());
// Now we create the new Loop object for the versioned loop.
Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
// Recalculate unswitching quota, inherit simplified switches info for NewBB,
// Probably clone more loop-unswitch related loop properties.
BranchesInfo.cloneData(NewLoop, L, VMap);
Loop *ParentLoop = L->getParentLoop();
if (ParentLoop) {
// Make sure to add the cloned preheader and exit blocks to the parent loop
// as well.
ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
}
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
// The new exit block should be in the same loop as the old one.
if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
"Exit block should have been split to have one successor!");
BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
// If the successor of the exit block had PHI nodes, add an entry for
// NewExit.
for (BasicBlock::iterator I = ExitSucc->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
ValueToValueMapTy::iterator It = VMap.find(V);
if (It != VMap.end()) V = It->second;
PN->addIncoming(V, NewExit);
}
if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
&*ExitSucc->getFirstInsertionPt());
for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
I != E; ++I) {
BasicBlock *BB = *I;
LandingPadInst *LPI = BB->getLandingPadInst();
LPI->replaceAllUsesWith(PN);
PN->addIncoming(LPI, BB);
}
}
}
// Rewrite the code to refer to itself.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (Instruction &I : *NewBlocks[i]) {
RemapInstruction(&I, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::assume)
AC->registerAssumption(II);
}
}
// Rewrite the original preheader to select between versions of the loop.
BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
"Preheader splitting did not work correctly!");
// Emit the new branch that selects between the two versions of this loop.
EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
TI);
LPM->deleteSimpleAnalysisValue(OldBR, L);
OldBR->eraseFromParent();
LoopProcessWorklist.push_back(NewLoop);
redoLoop = true;
// Keep a WeakTrackingVH holding onto LIC. If the first call to
// RewriteLoopBody
// deletes the instruction (for example by simplifying a PHI that feeds into
// the condition that we're unswitching on), we don't rewrite the second
// iteration.
WeakTrackingVH LICHandle(LIC);
// Now we rewrite the original code to know that the condition is true and the
// new code to know that the condition is false.
RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
// It's possible that simplifying one loop could cause the other to be
// changed to another value or a constant. If its a constant, don't simplify
// it.
if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
LICHandle && !isa<Constant>(LICHandle))
RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
}
/// Remove all instances of I from the worklist vector specified.
static void RemoveFromWorklist(Instruction *I,
std::vector<Instruction*> &Worklist) {
Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
Worklist.end());
}
/// When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
std::vector<Instruction*> &Worklist,
Loop *L, LPPassManager *LPM) {
DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
// Add users to the worklist which may be simplified now.
for (User *U : I->users())
Worklist.push_back(cast<Instruction>(U));
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->replaceAllUsesWith(V);
if (!I->mayHaveSideEffects())
I->eraseFromParent();
++NumSimplify;
}
/// We know either that the value LIC has the value specified by Val in the
/// specified loop, or we know it does NOT have that value.
/// Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val,
bool IsEqual) {
assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
// FIXME: Support correlated properties, like:
// for (...)
// if (li1 < li2)
// ...
// if (li1 > li2)
// ...
// FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
// selects, switches.
std::vector<Instruction*> Worklist;
LLVMContext &Context = Val->getContext();
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
if (IsEqual || (isa<ConstantInt>(Val) &&
Val->getType()->isIntegerTy(1))) {
Value *Replacement;
if (IsEqual)
Replacement = Val;
else
Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
!cast<ConstantInt>(Val)->getZExtValue());
for (User *U : LIC->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI || !L->contains(UI))
continue;
Worklist.push_back(UI);
}
for (Instruction *UI : Worklist)
UI->replaceUsesOfWith(LIC, Replacement);
SimplifyCode(Worklist, L);
return;
}
// Otherwise, we don't know the precise value of LIC, but we do know that it
// is certainly NOT "Val". As such, simplify any uses in the loop that we
// can. This case occurs when we unswitch switch statements.
for (User *U : LIC->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI || !L->contains(UI))
continue;
// At this point, we know LIC is definitely not Val. Try to use some simple
// logic to simplify the user w.r.t. to the context.
if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
// This in-loop instruction has been simplified w.r.t. its context,
// i.e. LIC != Val, make sure we propagate its replacement value to
// all its users.
//
// We can not yet delete UI, the LIC user, yet, because that would invalidate
// the LIC->users() iterator !. However, we can make this instruction
// dead by replacing all its users and push it onto the worklist so that
// it can be properly deleted and its operands simplified.
UI->replaceAllUsesWith(Replacement);
}
}
// This is a LIC user, push it into the worklist so that SimplifyCode can
// attempt to simplify it.
Worklist.push_back(UI);
// If we know that LIC is not Val, use this info to simplify code.
SwitchInst *SI = dyn_cast<SwitchInst>(UI);
if (!SI || !isa<ConstantInt>(Val)) continue;
// NOTE: if a case value for the switch is unswitched out, we record it
// after the unswitch finishes. We can not record it here as the switch
// is not a direct user of the partial LIV.
SwitchInst::CaseHandle DeadCase =
*SI->findCaseValue(cast<ConstantInt>(Val));
// Default case is live for multiple values.
if (DeadCase == *SI->case_default())
continue;
// Found a dead case value. Don't remove PHI nodes in the
// successor if they become single-entry, those PHI nodes may
// be in the Users list.
BasicBlock *Switch = SI->getParent();
BasicBlock *SISucc = DeadCase.getCaseSuccessor();
BasicBlock *Latch = L->getLoopLatch();
if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
// If the DeadCase successor dominates the loop latch, then the
// transformation isn't safe since it will delete the sole predecessor edge
// to the latch.
if (Latch && DT->dominates(SISucc, Latch))
continue;
// FIXME: This is a hack. We need to keep the successor around
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the
// loop structure and put the block on a dead code path.
SplitEdge(Switch, SISucc, DT, LI);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (BasicBlock::iterator II = NewSISucc->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
UndefValue::get(PN->getType()));
// Tell the domtree about the new block. We don't fully update the
// domtree here -- instead we force it to do a full recomputation
// after the pass is complete -- but we do need to inform it of
// new blocks.
DT->addNewBlock(Abort, NewSISucc);
}
SimplifyCode(Worklist, L);
}
/// Now that we have simplified some instructions in the loop, walk over it and
/// constant prop, dce, and fold control flow where possible. Note that this is
/// effectively a very simple loop-structure-aware optimizer. During processing
/// of this loop, L could very well be deleted, so it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
// Simple DCE.
if (isInstructionTriviallyDead(I)) {
DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->eraseFromParent();
++NumSimplify;
continue;
}
// See if instruction simplification can hack this up. This is common for
// things like "select false, X, Y" after unswitching made the condition be
// 'false'. TODO: update the domtree properly so we can pass it here.
if (Value *V = SimplifyInstruction(I, DL))
if (LI->replacementPreservesLCSSAForm(I, V)) {
ReplaceUsesOfWith(I, V, Worklist, L, LPM);
continue;
}
// Special case hacks that appear commonly in unswitched code.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (BI->isUnconditional()) {
// If BI's parent is the only pred of the successor, fold the two blocks
// together.
BasicBlock *Pred = BI->getParent();
BasicBlock *Succ = BI->getSuccessor(0);
BasicBlock *SinglePred = Succ->getSinglePredecessor();
if (!SinglePred) continue; // Nothing to do.
assert(SinglePred == Pred && "CFG broken");
DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
<< Succ->getName() << "\n");
// Resolve any single entry PHI nodes in Succ.
while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
// If Succ has any successors with PHI nodes, update them to have
// entries coming from Pred instead of Succ.
Succ->replaceAllUsesWith(Pred);
// Move all of the successor contents from Succ to Pred.
Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
Succ->begin(), Succ->end());
LPM->deleteSimpleAnalysisValue(BI, L);
RemoveFromWorklist(BI, Worklist);
BI->eraseFromParent();
// Remove Succ from the loop tree.
LI->removeBlock(Succ);
LPM->deleteSimpleAnalysisValue(Succ, L);
Succ->eraseFromParent();
++NumSimplify;
continue;
}
continue;
}
}
}
/// Simple simplifications we can do given the information that Cond is
/// definitely not equal to Val.
Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
Value *Invariant,
Constant *Val) {
// icmp eq cond, val -> false
ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
if (CI && CI->isEquality()) {
Value *Op0 = CI->getOperand(0);
Value *Op1 = CI->getOperand(1);
if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
LLVMContext &Ctx = Inst->getContext();
if (CI->getPredicate() == CmpInst::ICMP_EQ)
return ConstantInt::getFalse(Ctx);
else
return ConstantInt::getTrue(Ctx);
}
}
// FIXME: there may be other opportunities, e.g. comparison with floating
// point, or Invariant - Val != 0, etc.
return nullptr;
}