1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/X86/X86TargetMachine.cpp
Dan Gohman 56b0c33a9d Factor out the code for determining when symblic addresses
require RIP-relative addressing and use it to fix a bug
in X86FastISel in x86-64 PIC mode, where it was trying to
use base/index registers with RIP-relative addresses. This
fixes a bunch of x86-64 testsuite failures.

llvm-svn: 56676
2008-09-26 19:15:30 +00:00

248 lines
8.7 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetMachineRegistry.h"
using namespace llvm;
/// X86TargetMachineModule - Note that this is used on hosts that cannot link
/// in a library unless there are references into the library. In particular,
/// it seems that it is not possible to get things to work on Win32 without
/// this. Though it is unused, do not remove it.
extern "C" int X86TargetMachineModule;
int X86TargetMachineModule = 0;
// Register the target.
static RegisterTarget<X86_32TargetMachine>
X("x86", " 32-bit X86: Pentium-Pro and above");
static RegisterTarget<X86_64TargetMachine>
Y("x86-64", " 64-bit X86: EM64T and AMD64");
// No assembler printer by default
X86TargetMachine::AsmPrinterCtorFn X86TargetMachine::AsmPrinterCtor = 0;
const TargetAsmInfo *X86TargetMachine::createTargetAsmInfo() const {
if (Subtarget.isFlavorIntel())
return new X86WinTargetAsmInfo(*this);
else
switch (Subtarget.TargetType) {
case X86Subtarget::isDarwin:
return new X86DarwinTargetAsmInfo(*this);
case X86Subtarget::isELF:
return new X86ELFTargetAsmInfo(*this);
case X86Subtarget::isMingw:
case X86Subtarget::isCygwin:
return new X86COFFTargetAsmInfo(*this);
case X86Subtarget::isWindows:
return new X86WinTargetAsmInfo(*this);
default:
return new X86GenericTargetAsmInfo(*this);
}
}
unsigned X86_32TargetMachine::getJITMatchQuality() {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
return 10;
#endif
return 0;
}
unsigned X86_64TargetMachine::getJITMatchQuality() {
#if defined(__x86_64__) || defined(_M_AMD64)
return 10;
#endif
return 0;
}
unsigned X86_32TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "i[3-9]86-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
TT[4] == '-' && TT[1] - '3' < 6)
return 20;
// If the target triple is something non-X86, we don't match.
if (!TT.empty()) return 0;
if (M.getEndianness() == Module::LittleEndian &&
M.getPointerSize() == Module::Pointer32)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
unsigned X86_64TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "x86_64-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 7 && TT[0] == 'x' && TT[1] == '8' && TT[2] == '6' &&
TT[3] == '_' && TT[4] == '6' && TT[5] == '4' && TT[6] == '-')
return 20;
// We strongly match "amd64-*".
if (TT.size() >= 6 && TT[0] == 'a' && TT[1] == 'm' && TT[2] == 'd' &&
TT[3] == '6' && TT[4] == '4' && TT[5] == '-')
return 20;
// If the target triple is something non-X86-64, we don't match.
if (!TT.empty()) return 0;
if (M.getEndianness() == Module::LittleEndian &&
M.getPointerSize() == Module::Pointer64)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
X86_32TargetMachine::X86_32TargetMachine(const Module &M, const std::string &FS)
: X86TargetMachine(M, FS, false) {
}
X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS)
: X86TargetMachine(M, FS, true) {
}
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS,
bool is64Bit)
: Subtarget(M, FS, is64Bit),
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
InstrInfo(*this), JITInfo(*this), TLInfo(*this) {
DefRelocModel = getRelocationModel();
// FIXME: Correctly select PIC model for Win64 stuff
if (getRelocationModel() == Reloc::Default) {
if (Subtarget.isTargetDarwin() ||
(Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64()))
setRelocationModel(Reloc::DynamicNoPIC);
else
setRelocationModel(Reloc::Static);
}
if (Subtarget.is64Bit()) {
// No DynamicNoPIC support under X86-64.
if (getRelocationModel() == Reloc::DynamicNoPIC)
setRelocationModel(Reloc::PIC_);
// Default X86-64 code model is small.
if (getCodeModel() == CodeModel::Default)
setCodeModel(CodeModel::Small);
}
if (Subtarget.isTargetCygMing())
Subtarget.setPICStyle(PICStyle::WinPIC);
else if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyle::RIPRel);
else
Subtarget.setPICStyle(PICStyle::Stub);
} else if (Subtarget.isTargetELF()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyle::RIPRel);
else
Subtarget.setPICStyle(PICStyle::GOT);
}
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
bool X86TargetMachine::addInstSelector(PassManagerBase &PM, bool Fast) {
// Install an instruction selector.
PM.add(createX86ISelDag(*this, Fast));
return false;
}
bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM, bool Fast) {
// Calculate and set max stack object alignment early, so we can decide
// whether we will need stack realignment (and thus FP).
PM.add(createX86MaxStackAlignmentCalculatorPass());
return false; // -print-machineinstr shouldn't print after this.
}
bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM, bool Fast) {
PM.add(createX86FloatingPointStackifierPass());
return true; // -print-machineinstr should print after this.
}
bool X86TargetMachine::addAssemblyEmitter(PassManagerBase &PM, bool Fast,
raw_ostream &Out) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(Out, *this));
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM, bool Fast,
bool DumpAsm, MachineCodeEmitter &MCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
(!Subtarget.isTargetDarwin() || !Subtarget.is64Bit()))
setRelocationModel(Reloc::Static);
// 64-bit JIT places everything in the same buffer except external functions.
// On Darwin, use small code model but hack the call instruction for
// externals. Elsewhere, do not assume globals are in the lower 4G.
if (Subtarget.is64Bit()) {
if (Subtarget.isTargetDarwin())
setCodeModel(CodeModel::Small);
else
setCodeModel(CodeModel::Large);
}
PM.add(createX86CodeEmitterPass(*this, MCE));
if (DumpAsm) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(errs(), *this));
}
return false;
}
bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM, bool Fast,
bool DumpAsm, MachineCodeEmitter &MCE) {
PM.add(createX86CodeEmitterPass(*this, MCE));
if (DumpAsm) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(errs(), *this));
}
return false;
}
// symbolicAddressesAreRIPRel - Return true if symbolic addresses are
// RIP-relative on this machine, taking into consideration the relocation
// model and subtarget. RIP-relative addresses cannot have a separate
// base or index register.
bool X86TargetMachine::symbolicAddressesAreRIPRel() const {
return getRelocationModel() != Reloc::Static &&
Subtarget.isPICStyleRIPRel();
}