mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
817 lines
32 KiB
C++
817 lines
32 KiB
C++
//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
|
|
/// of a load from memory (i.e., SOURCE), and any operation that may transmit
|
|
/// the value loaded from memory over a covert channel, or use the value loaded
|
|
/// from memory to determine a branch/call target (i.e., SINK). After finding
|
|
/// all such gadgets in a given function, the pass minimally inserts LFENCE
|
|
/// instructions in such a manner that the following property is satisfied: for
|
|
/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
|
|
/// least one LFENCE instruction. The algorithm that implements this minimal
|
|
/// insertion is influenced by an academic paper that minimally inserts memory
|
|
/// fences for high-performance concurrent programs:
|
|
/// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
|
|
/// The algorithm implemented in this pass is as follows:
|
|
/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
|
|
/// following components:
|
|
/// - SOURCE instructions (also includes function arguments)
|
|
/// - SINK instructions
|
|
/// - Basic block entry points
|
|
/// - Basic block terminators
|
|
/// - LFENCE instructions
|
|
/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
|
|
/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
|
|
/// mitigated, go to step 6.
|
|
/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
|
|
/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
|
|
/// 5. Go to step 2.
|
|
/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
|
|
/// to tell LLVM that the function was modified.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ImmutableGraph.h"
|
|
#include "X86.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominanceFrontier.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RDFGraph.h"
|
|
#include "llvm/CodeGen/RDFLiveness.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/DOTGraphTraits.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DynamicLibrary.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define PASS_KEY "x86-lvi-load"
|
|
#define DEBUG_TYPE PASS_KEY
|
|
|
|
STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
|
|
STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
|
|
STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
|
|
"were deployed");
|
|
STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
|
|
|
|
static cl::opt<std::string> OptimizePluginPath(
|
|
PASS_KEY "-opt-plugin",
|
|
cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
|
|
|
|
static cl::opt<bool> NoConditionalBranches(
|
|
PASS_KEY "-no-cbranch",
|
|
cl::desc("Don't treat conditional branches as disclosure gadgets. This "
|
|
"may improve performance, at the cost of security."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> EmitDot(
|
|
PASS_KEY "-dot",
|
|
cl::desc(
|
|
"For each function, emit a dot graph depicting potential LVI gadgets"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> EmitDotOnly(
|
|
PASS_KEY "-dot-only",
|
|
cl::desc("For each function, emit a dot graph depicting potential LVI "
|
|
"gadgets, and do not insert any fences"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> EmitDotVerify(
|
|
PASS_KEY "-dot-verify",
|
|
cl::desc("For each function, emit a dot graph to stdout depicting "
|
|
"potential LVI gadgets, used for testing purposes only"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static llvm::sys::DynamicLibrary OptimizeDL;
|
|
typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
|
|
unsigned int *Edges, int *EdgeValues,
|
|
int *CutEdges /* out */, unsigned int EdgesSize);
|
|
static OptimizeCutT OptimizeCut = nullptr;
|
|
|
|
namespace {
|
|
|
|
struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
|
|
static constexpr int GadgetEdgeSentinel = -1;
|
|
static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
|
|
|
|
using GraphT = ImmutableGraph<MachineInstr *, int>;
|
|
using Node = typename GraphT::Node;
|
|
using Edge = typename GraphT::Edge;
|
|
using size_type = typename GraphT::size_type;
|
|
MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
|
|
std::unique_ptr<Edge[]> Edges, size_type NodesSize,
|
|
size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
|
|
: GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
|
|
NumFences(NumFences), NumGadgets(NumGadgets) {}
|
|
static inline bool isCFGEdge(const Edge &E) {
|
|
return E.getValue() != GadgetEdgeSentinel;
|
|
}
|
|
static inline bool isGadgetEdge(const Edge &E) {
|
|
return E.getValue() == GadgetEdgeSentinel;
|
|
}
|
|
int NumFences;
|
|
int NumGadgets;
|
|
};
|
|
|
|
class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
|
|
public:
|
|
X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
|
|
|
|
StringRef getPassName() const override {
|
|
return "X86 Load Value Injection (LVI) Load Hardening";
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
static char ID;
|
|
|
|
private:
|
|
using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
|
|
using Edge = MachineGadgetGraph::Edge;
|
|
using Node = MachineGadgetGraph::Node;
|
|
using EdgeSet = MachineGadgetGraph::EdgeSet;
|
|
using NodeSet = MachineGadgetGraph::NodeSet;
|
|
|
|
const X86Subtarget *STI;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
|
|
std::unique_ptr<MachineGadgetGraph>
|
|
getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
|
|
const MachineDominatorTree &MDT,
|
|
const MachineDominanceFrontier &MDF) const;
|
|
int hardenLoadsWithPlugin(MachineFunction &MF,
|
|
std::unique_ptr<MachineGadgetGraph> Graph) const;
|
|
int hardenLoadsWithHeuristic(MachineFunction &MF,
|
|
std::unique_ptr<MachineGadgetGraph> Graph) const;
|
|
int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
|
|
EdgeSet &ElimEdges /* in, out */,
|
|
NodeSet &ElimNodes /* in, out */) const;
|
|
std::unique_ptr<MachineGadgetGraph>
|
|
trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
|
|
int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
|
|
EdgeSet &CutEdges /* in, out */) const;
|
|
bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
|
|
bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
|
|
inline bool isFence(const MachineInstr *MI) const {
|
|
return MI && (MI->getOpcode() == X86::LFENCE ||
|
|
(STI->useLVIControlFlowIntegrity() && MI->isCall()));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <>
|
|
struct GraphTraits<MachineGadgetGraph *>
|
|
: GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
|
|
|
|
template <>
|
|
struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
|
|
using GraphType = MachineGadgetGraph;
|
|
using Traits = llvm::GraphTraits<GraphType *>;
|
|
using NodeRef = typename Traits::NodeRef;
|
|
using EdgeRef = typename Traits::EdgeRef;
|
|
using ChildIteratorType = typename Traits::ChildIteratorType;
|
|
using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
|
|
|
|
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
|
|
|
|
std::string getNodeLabel(NodeRef Node, GraphType *) {
|
|
if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
|
|
return "ARGS";
|
|
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
OS << *Node->getValue();
|
|
return OS.str();
|
|
}
|
|
|
|
static std::string getNodeAttributes(NodeRef Node, GraphType *) {
|
|
MachineInstr *MI = Node->getValue();
|
|
if (MI == MachineGadgetGraph::ArgNodeSentinel)
|
|
return "color = blue";
|
|
if (MI->getOpcode() == X86::LFENCE)
|
|
return "color = green";
|
|
return "";
|
|
}
|
|
|
|
static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
|
|
GraphType *) {
|
|
int EdgeVal = (*E.getCurrent()).getValue();
|
|
return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
|
|
: "color = red, style = \"dashed\"";
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
|
|
constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
|
|
|
|
char X86LoadValueInjectionLoadHardeningPass::ID = 0;
|
|
|
|
void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
|
|
AnalysisUsage &AU) const {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachineDominanceFrontier>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF,
|
|
MachineGadgetGraph *G) {
|
|
WriteGraph(OS, G, /*ShortNames*/ false,
|
|
"Speculative gadgets for \"" + MF.getName() + "\" function");
|
|
}
|
|
|
|
bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
|
|
MachineFunction &MF) {
|
|
LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
|
|
<< " *****\n");
|
|
STI = &MF.getSubtarget<X86Subtarget>();
|
|
if (!STI->useLVILoadHardening())
|
|
return false;
|
|
|
|
// FIXME: support 32-bit
|
|
if (!STI->is64Bit())
|
|
report_fatal_error("LVI load hardening is only supported on 64-bit", false);
|
|
|
|
// Don't skip functions with the "optnone" attr but participate in opt-bisect.
|
|
const Function &F = MF.getFunction();
|
|
if (!F.hasOptNone() && skipFunction(F))
|
|
return false;
|
|
|
|
++NumFunctionsConsidered;
|
|
TII = STI->getInstrInfo();
|
|
TRI = STI->getRegisterInfo();
|
|
LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
|
|
const auto &MLI = getAnalysis<MachineLoopInfo>();
|
|
const auto &MDT = getAnalysis<MachineDominatorTree>();
|
|
const auto &MDF = getAnalysis<MachineDominanceFrontier>();
|
|
std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
|
|
LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
|
|
if (Graph == nullptr)
|
|
return false; // didn't find any gadgets
|
|
|
|
if (EmitDotVerify) {
|
|
writeGadgetGraph(outs(), MF, Graph.get());
|
|
return false;
|
|
}
|
|
|
|
if (EmitDot || EmitDotOnly) {
|
|
LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
|
|
std::error_code FileError;
|
|
std::string FileName = "lvi.";
|
|
FileName += MF.getName();
|
|
FileName += ".dot";
|
|
raw_fd_ostream FileOut(FileName, FileError);
|
|
if (FileError)
|
|
errs() << FileError.message();
|
|
writeGadgetGraph(FileOut, MF, Graph.get());
|
|
FileOut.close();
|
|
LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
|
|
if (EmitDotOnly)
|
|
return false;
|
|
}
|
|
|
|
int FencesInserted;
|
|
if (!OptimizePluginPath.empty()) {
|
|
if (!OptimizeDL.isValid()) {
|
|
std::string ErrorMsg;
|
|
OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
|
|
OptimizePluginPath.c_str(), &ErrorMsg);
|
|
if (!ErrorMsg.empty())
|
|
report_fatal_error("Failed to load opt plugin: \"" + ErrorMsg + '\"');
|
|
OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
|
|
if (!OptimizeCut)
|
|
report_fatal_error("Invalid optimization plugin");
|
|
}
|
|
FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
|
|
} else { // Use the default greedy heuristic
|
|
FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
|
|
}
|
|
|
|
if (FencesInserted > 0)
|
|
++NumFunctionsMitigated;
|
|
NumFences += FencesInserted;
|
|
return (FencesInserted > 0);
|
|
}
|
|
|
|
std::unique_ptr<MachineGadgetGraph>
|
|
X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
|
|
MachineFunction &MF, const MachineLoopInfo &MLI,
|
|
const MachineDominatorTree &MDT,
|
|
const MachineDominanceFrontier &MDF) const {
|
|
using namespace rdf;
|
|
|
|
// Build the Register Dataflow Graph using the RDF framework
|
|
TargetOperandInfo TOI{*TII};
|
|
DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF, TOI};
|
|
DFG.build();
|
|
Liveness L{MF.getRegInfo(), DFG};
|
|
L.computePhiInfo();
|
|
|
|
GraphBuilder Builder;
|
|
using GraphIter = typename GraphBuilder::BuilderNodeRef;
|
|
DenseMap<MachineInstr *, GraphIter> NodeMap;
|
|
int FenceCount = 0, GadgetCount = 0;
|
|
auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
|
|
auto Ref = NodeMap.find(MI);
|
|
if (Ref == NodeMap.end()) {
|
|
auto I = Builder.addVertex(MI);
|
|
NodeMap[MI] = I;
|
|
return std::pair<GraphIter, bool>{I, true};
|
|
}
|
|
return std::pair<GraphIter, bool>{Ref->getSecond(), false};
|
|
};
|
|
|
|
// The `Transmitters` map memoizes transmitters found for each def. If a def
|
|
// has not yet been analyzed, then it will not appear in the map. If a def
|
|
// has been analyzed and was determined not to have any transmitters, then
|
|
// its list of transmitters will be empty.
|
|
DenseMap<NodeId, std::vector<NodeId>> Transmitters;
|
|
|
|
// Analyze all machine instructions to find gadgets and LFENCEs, adding
|
|
// each interesting value to `Nodes`
|
|
auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
|
|
SmallSet<NodeId, 8> UsesVisited, DefsVisited;
|
|
std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
|
|
[&](NodeAddr<DefNode *> Def) {
|
|
if (Transmitters.find(Def.Id) != Transmitters.end())
|
|
return; // Already analyzed `Def`
|
|
|
|
// Use RDF to find all the uses of `Def`
|
|
rdf::NodeSet Uses;
|
|
RegisterRef DefReg = Def.Addr->getRegRef(DFG);
|
|
for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
|
|
auto Use = DFG.addr<UseNode *>(UseID);
|
|
if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
|
|
NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
|
|
for (const auto& I : L.getRealUses(Phi.Id)) {
|
|
if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
|
|
for (const auto &UA : I.second)
|
|
Uses.emplace(UA.first);
|
|
}
|
|
}
|
|
} else { // not a phi node
|
|
Uses.emplace(UseID);
|
|
}
|
|
}
|
|
|
|
// For each use of `Def`, we want to know whether:
|
|
// (1) The use can leak the Def'ed value,
|
|
// (2) The use can further propagate the Def'ed value to more defs
|
|
for (auto UseID : Uses) {
|
|
if (!UsesVisited.insert(UseID).second)
|
|
continue; // Already visited this use of `Def`
|
|
|
|
auto Use = DFG.addr<UseNode *>(UseID);
|
|
assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
|
|
MachineOperand &UseMO = Use.Addr->getOp();
|
|
MachineInstr &UseMI = *UseMO.getParent();
|
|
assert(UseMO.isReg());
|
|
|
|
// We naively assume that an instruction propagates any loaded
|
|
// uses to all defs unless the instruction is a call, in which
|
|
// case all arguments will be treated as gadget sources during
|
|
// analysis of the callee function.
|
|
if (UseMI.isCall())
|
|
continue;
|
|
|
|
// Check whether this use can transmit (leak) its value.
|
|
if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
|
|
(!NoConditionalBranches &&
|
|
instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
|
|
Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
|
|
if (UseMI.mayLoad())
|
|
continue; // Found a transmitting load -- no need to continue
|
|
// traversing its defs (i.e., this load will become
|
|
// a new gadget source anyways).
|
|
}
|
|
|
|
// Check whether the use propagates to more defs.
|
|
NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
|
|
rdf::NodeList AnalyzedChildDefs;
|
|
for (const auto &ChildDef :
|
|
Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
|
|
if (!DefsVisited.insert(ChildDef.Id).second)
|
|
continue; // Already visited this def
|
|
if (Def.Addr->getAttrs() & NodeAttrs::Dead)
|
|
continue;
|
|
if (Def.Id == ChildDef.Id)
|
|
continue; // `Def` uses itself (e.g., increment loop counter)
|
|
|
|
AnalyzeDefUseChain(ChildDef);
|
|
|
|
// `Def` inherits all of its child defs' transmitters.
|
|
for (auto TransmitterId : Transmitters[ChildDef.Id])
|
|
Transmitters[Def.Id].push_back(TransmitterId);
|
|
}
|
|
}
|
|
|
|
// Note that this statement adds `Def.Id` to the map if no
|
|
// transmitters were found for `Def`.
|
|
auto &DefTransmitters = Transmitters[Def.Id];
|
|
|
|
// Remove duplicate transmitters
|
|
llvm::sort(DefTransmitters);
|
|
DefTransmitters.erase(
|
|
std::unique(DefTransmitters.begin(), DefTransmitters.end()),
|
|
DefTransmitters.end());
|
|
};
|
|
|
|
// Find all of the transmitters
|
|
AnalyzeDefUseChain(SourceDef);
|
|
auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
|
|
if (SourceDefTransmitters.empty())
|
|
return; // No transmitters for `SourceDef`
|
|
|
|
MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
|
|
? MachineGadgetGraph::ArgNodeSentinel
|
|
: SourceDef.Addr->getOp().getParent();
|
|
auto GadgetSource = MaybeAddNode(Source);
|
|
// Each transmitter is a sink for `SourceDef`.
|
|
for (auto TransmitterId : SourceDefTransmitters) {
|
|
MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
|
|
auto GadgetSink = MaybeAddNode(Sink);
|
|
// Add the gadget edge to the graph.
|
|
Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
|
|
GadgetSource.first, GadgetSink.first);
|
|
++GadgetCount;
|
|
}
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
|
|
// Analyze function arguments
|
|
NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
|
|
for (NodeAddr<PhiNode *> ArgPhi :
|
|
EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
|
|
NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
|
|
llvm::for_each(Defs, AnalyzeDef);
|
|
}
|
|
// Analyze every instruction in MF
|
|
for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
|
|
for (NodeAddr<StmtNode *> SA :
|
|
BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
|
|
MachineInstr *MI = SA.Addr->getCode();
|
|
if (isFence(MI)) {
|
|
MaybeAddNode(MI);
|
|
++FenceCount;
|
|
} else if (MI->mayLoad()) {
|
|
NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
|
|
llvm::for_each(Defs, AnalyzeDef);
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
|
|
LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
|
|
if (GadgetCount == 0)
|
|
return nullptr;
|
|
NumGadgets += GadgetCount;
|
|
|
|
// Traverse CFG to build the rest of the graph
|
|
SmallSet<MachineBasicBlock *, 8> BlocksVisited;
|
|
std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
|
|
[&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
|
|
unsigned LoopDepth = MLI.getLoopDepth(MBB);
|
|
if (!MBB->empty()) {
|
|
// Always add the first instruction in each block
|
|
auto NI = MBB->begin();
|
|
auto BeginBB = MaybeAddNode(&*NI);
|
|
Builder.addEdge(ParentDepth, GI, BeginBB.first);
|
|
if (!BlocksVisited.insert(MBB).second)
|
|
return;
|
|
|
|
// Add any instructions within the block that are gadget components
|
|
GI = BeginBB.first;
|
|
while (++NI != MBB->end()) {
|
|
auto Ref = NodeMap.find(&*NI);
|
|
if (Ref != NodeMap.end()) {
|
|
Builder.addEdge(LoopDepth, GI, Ref->getSecond());
|
|
GI = Ref->getSecond();
|
|
}
|
|
}
|
|
|
|
// Always add the terminator instruction, if one exists
|
|
auto T = MBB->getFirstTerminator();
|
|
if (T != MBB->end()) {
|
|
auto EndBB = MaybeAddNode(&*T);
|
|
if (EndBB.second)
|
|
Builder.addEdge(LoopDepth, GI, EndBB.first);
|
|
GI = EndBB.first;
|
|
}
|
|
}
|
|
for (MachineBasicBlock *Succ : MBB->successors())
|
|
TraverseCFG(Succ, GI, LoopDepth);
|
|
};
|
|
// ArgNodeSentinel is a pseudo-instruction that represents MF args in the
|
|
// GadgetGraph
|
|
GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
|
|
TraverseCFG(&MF.front(), ArgNode, 0);
|
|
std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
|
|
LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
|
|
return G;
|
|
}
|
|
|
|
// Returns the number of remaining gadget edges that could not be eliminated
|
|
int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
|
|
MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
|
|
NodeSet &ElimNodes /* in, out */) const {
|
|
if (G.NumFences > 0) {
|
|
// Eliminate fences and CFG edges that ingress and egress the fence, as
|
|
// they are trivially mitigated.
|
|
for (const Edge &E : G.edges()) {
|
|
const Node *Dest = E.getDest();
|
|
if (isFence(Dest->getValue())) {
|
|
ElimNodes.insert(*Dest);
|
|
ElimEdges.insert(E);
|
|
for (const Edge &DE : Dest->edges())
|
|
ElimEdges.insert(DE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find and eliminate gadget edges that have been mitigated.
|
|
int MitigatedGadgets = 0, RemainingGadgets = 0;
|
|
NodeSet ReachableNodes{G};
|
|
for (const Node &RootN : G.nodes()) {
|
|
if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
|
|
continue; // skip this node if it isn't a gadget source
|
|
|
|
// Find all of the nodes that are CFG-reachable from RootN using DFS
|
|
ReachableNodes.clear();
|
|
std::function<void(const Node *, bool)> FindReachableNodes =
|
|
[&](const Node *N, bool FirstNode) {
|
|
if (!FirstNode)
|
|
ReachableNodes.insert(*N);
|
|
for (const Edge &E : N->edges()) {
|
|
const Node *Dest = E.getDest();
|
|
if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
|
|
!ReachableNodes.contains(*Dest))
|
|
FindReachableNodes(Dest, false);
|
|
}
|
|
};
|
|
FindReachableNodes(&RootN, true);
|
|
|
|
// Any gadget whose sink is unreachable has been mitigated
|
|
for (const Edge &E : RootN.edges()) {
|
|
if (MachineGadgetGraph::isGadgetEdge(E)) {
|
|
if (ReachableNodes.contains(*E.getDest())) {
|
|
// This gadget's sink is reachable
|
|
++RemainingGadgets;
|
|
} else { // This gadget's sink is unreachable, and therefore mitigated
|
|
++MitigatedGadgets;
|
|
ElimEdges.insert(E);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return RemainingGadgets;
|
|
}
|
|
|
|
std::unique_ptr<MachineGadgetGraph>
|
|
X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
|
|
std::unique_ptr<MachineGadgetGraph> Graph) const {
|
|
NodeSet ElimNodes{*Graph};
|
|
EdgeSet ElimEdges{*Graph};
|
|
int RemainingGadgets =
|
|
elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
|
|
if (ElimEdges.empty() && ElimNodes.empty()) {
|
|
Graph->NumFences = 0;
|
|
Graph->NumGadgets = RemainingGadgets;
|
|
} else {
|
|
Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
|
|
RemainingGadgets);
|
|
}
|
|
return Graph;
|
|
}
|
|
|
|
int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
|
|
MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
|
|
int FencesInserted = 0;
|
|
|
|
do {
|
|
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
|
|
Graph = trimMitigatedEdges(std::move(Graph));
|
|
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
|
|
if (Graph->NumGadgets == 0)
|
|
break;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cutting edges...\n");
|
|
EdgeSet CutEdges{*Graph};
|
|
auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
|
|
1 /* terminator node */);
|
|
auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
|
|
auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
|
|
auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
|
|
for (const Node &N : Graph->nodes()) {
|
|
Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
|
|
}
|
|
Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
|
|
for (const Edge &E : Graph->edges()) {
|
|
Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
|
|
EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
|
|
}
|
|
OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
|
|
EdgeCuts.get(), Graph->edges_size());
|
|
for (int I = 0; I < Graph->edges_size(); ++I)
|
|
if (EdgeCuts[I])
|
|
CutEdges.set(I);
|
|
LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
|
|
LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
|
|
FencesInserted += insertFences(MF, *Graph, CutEdges);
|
|
LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
|
|
LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
|
|
|
|
Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
|
|
} while (true);
|
|
|
|
return FencesInserted;
|
|
}
|
|
|
|
int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
|
|
MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
|
|
// If `MF` does not have any fences, then no gadgets would have been
|
|
// mitigated at this point.
|
|
if (Graph->NumFences > 0) {
|
|
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
|
|
Graph = trimMitigatedEdges(std::move(Graph));
|
|
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
|
|
}
|
|
|
|
if (Graph->NumGadgets == 0)
|
|
return 0;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cutting edges...\n");
|
|
EdgeSet CutEdges{*Graph};
|
|
|
|
// Begin by collecting all ingress CFG edges for each node
|
|
DenseMap<const Node *, SmallVector<const Edge *, 2>> IngressEdgeMap;
|
|
for (const Edge &E : Graph->edges())
|
|
if (MachineGadgetGraph::isCFGEdge(E))
|
|
IngressEdgeMap[E.getDest()].push_back(&E);
|
|
|
|
// For each gadget edge, make cuts that guarantee the gadget will be
|
|
// mitigated. A computationally efficient way to achieve this is to either:
|
|
// (a) cut all egress CFG edges from the gadget source, or
|
|
// (b) cut all ingress CFG edges to the gadget sink.
|
|
//
|
|
// Moreover, the algorithm tries not to make a cut into a loop by preferring
|
|
// to make a (b)-type cut if the gadget source resides at a greater loop depth
|
|
// than the gadget sink, or an (a)-type cut otherwise.
|
|
for (const Node &N : Graph->nodes()) {
|
|
for (const Edge &E : N.edges()) {
|
|
if (!MachineGadgetGraph::isGadgetEdge(E))
|
|
continue;
|
|
|
|
SmallVector<const Edge *, 2> EgressEdges;
|
|
SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
|
|
for (const Edge &EgressEdge : N.edges())
|
|
if (MachineGadgetGraph::isCFGEdge(EgressEdge))
|
|
EgressEdges.push_back(&EgressEdge);
|
|
|
|
int EgressCutCost = 0, IngressCutCost = 0;
|
|
for (const Edge *EgressEdge : EgressEdges)
|
|
if (!CutEdges.contains(*EgressEdge))
|
|
EgressCutCost += EgressEdge->getValue();
|
|
for (const Edge *IngressEdge : IngressEdges)
|
|
if (!CutEdges.contains(*IngressEdge))
|
|
IngressCutCost += IngressEdge->getValue();
|
|
|
|
auto &EdgesToCut =
|
|
IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
|
|
for (const Edge *E : EdgesToCut)
|
|
CutEdges.insert(*E);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
|
|
LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
|
|
int FencesInserted = insertFences(MF, *Graph, CutEdges);
|
|
LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
|
|
LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
|
|
|
|
return FencesInserted;
|
|
}
|
|
|
|
int X86LoadValueInjectionLoadHardeningPass::insertFences(
|
|
MachineFunction &MF, MachineGadgetGraph &G,
|
|
EdgeSet &CutEdges /* in, out */) const {
|
|
int FencesInserted = 0;
|
|
for (const Node &N : G.nodes()) {
|
|
for (const Edge &E : N.edges()) {
|
|
if (CutEdges.contains(E)) {
|
|
MachineInstr *MI = N.getValue(), *Prev;
|
|
MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
|
|
MachineBasicBlock::iterator InsertionPt; // ...at this point
|
|
if (MI == MachineGadgetGraph::ArgNodeSentinel) {
|
|
// insert LFENCE at beginning of entry block
|
|
MBB = &MF.front();
|
|
InsertionPt = MBB->begin();
|
|
Prev = nullptr;
|
|
} else if (MI->isBranch()) { // insert the LFENCE before the branch
|
|
MBB = MI->getParent();
|
|
InsertionPt = MI;
|
|
Prev = MI->getPrevNode();
|
|
// Remove all egress CFG edges from this branch because the inserted
|
|
// LFENCE prevents gadgets from crossing the branch.
|
|
for (const Edge &E : N.edges()) {
|
|
if (MachineGadgetGraph::isCFGEdge(E))
|
|
CutEdges.insert(E);
|
|
}
|
|
} else { // insert the LFENCE after the instruction
|
|
MBB = MI->getParent();
|
|
InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
|
|
Prev = InsertionPt == MBB->end()
|
|
? (MBB->empty() ? nullptr : &MBB->back())
|
|
: InsertionPt->getPrevNode();
|
|
}
|
|
// Ensure this insertion is not redundant (two LFENCEs in sequence).
|
|
if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
|
|
(!Prev || !isFence(Prev))) {
|
|
BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
|
|
++FencesInserted;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return FencesInserted;
|
|
}
|
|
|
|
bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
|
|
const MachineInstr &MI, unsigned Reg) const {
|
|
if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
|
|
MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
|
|
return false;
|
|
|
|
// FIXME: This does not handle pseudo loading instruction like TCRETURN*
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (MemRefBeginIdx < 0) {
|
|
LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
|
|
"instruction:\n";
|
|
MI.print(dbgs()); dbgs() << '\n';);
|
|
return false;
|
|
}
|
|
MemRefBeginIdx += X86II::getOperandBias(Desc);
|
|
|
|
const MachineOperand &BaseMO =
|
|
MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
|
|
const MachineOperand &IndexMO =
|
|
MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
|
|
return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
|
|
TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
|
|
(IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
|
|
TRI->regsOverlap(IndexMO.getReg(), Reg));
|
|
}
|
|
|
|
bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
|
|
const MachineInstr &MI, unsigned Reg) const {
|
|
if (!MI.isConditionalBranch())
|
|
return false;
|
|
for (const MachineOperand &Use : MI.uses())
|
|
if (Use.isReg() && Use.getReg() == Reg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
|
|
"X86 LVI load hardening", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
|
|
INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
|
|
"X86 LVI load hardening", false, false)
|
|
|
|
FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
|
|
return new X86LoadValueInjectionLoadHardeningPass();
|
|
}
|