1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/CodeGen/TargetRegisterInfo.cpp
Krzysztof Parzyszek f817a9b5c3 TableGen support for parameterized register class information
This replaces TableGen's type inference to operate on parameterized
types instead of MVTs, and as a consequence, some interfaces have
changed:
- Uses of MVTs are replaced by ValueTypeByHwMode.
- EEVT::TypeSet is replaced by TypeSetByHwMode.

This affects the way that types and type sets are printed, and the
tests relying on that have been updated.

There are certain users of the inferred types outside of TableGen
itself, namely FastISel and GlobalISel. For those users, the way
that the types are accessed have changed. For typical scenarios,
these replacements can be used:
- TreePatternNode::getType(ResNo) -> getSimpleType(ResNo)
- TreePatternNode::hasTypeSet(ResNo) -> hasConcreteType(ResNo)
- TypeSet::isConcrete -> TypeSetByHwMode::isValueTypeByHwMode(false)

For more information, please refer to the review page.

Differential Revision: https://reviews.llvm.org/D31951

llvm-svn: 313271
2017-09-14 16:56:21 +00:00

434 lines
16 KiB
C++

//==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetRegisterInfo interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <utility>
#define DEBUG_TYPE "target-reg-info"
using namespace llvm;
TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RCB, regclass_iterator RCE,
const char *const *SRINames,
const LaneBitmask *SRILaneMasks,
LaneBitmask SRICoveringLanes,
const RegClassInfo *const RCIs,
unsigned Mode)
: InfoDesc(ID), SubRegIndexNames(SRINames),
SubRegIndexLaneMasks(SRILaneMasks),
RegClassBegin(RCB), RegClassEnd(RCE),
CoveringLanes(SRICoveringLanes),
RCInfos(RCIs), HwMode(Mode) {
}
TargetRegisterInfo::~TargetRegisterInfo() = default;
void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
const {
for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
RegisterSet.set(*AI);
}
bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
ArrayRef<MCPhysReg> Exceptions) const {
// Check that all super registers of reserved regs are reserved as well.
BitVector Checked(getNumRegs());
for (unsigned Reg : RegisterSet.set_bits()) {
if (Checked[Reg])
continue;
for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
dbgs() << "Error: Super register " << PrintReg(*SR, this)
<< " of reserved register " << PrintReg(Reg, this)
<< " is not reserved.\n";
return false;
}
// We transitively check superregs. So we can remember this for later
// to avoid compiletime explosion in deep register hierarchies.
Checked.set(*SR);
}
}
return true;
}
namespace llvm {
Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
unsigned SubIdx) {
return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
if (!Reg)
OS << "%noreg";
else if (TargetRegisterInfo::isStackSlot(Reg))
OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
else if (TargetRegisterInfo::isVirtualRegister(Reg))
OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
else if (TRI && Reg < TRI->getNumRegs())
OS << '%' << TRI->getName(Reg);
else
OS << "%physreg" << Reg;
if (SubIdx) {
if (TRI)
OS << ':' << TRI->getSubRegIndexName(SubIdx);
else
OS << ":sub(" << SubIdx << ')';
}
});
}
Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
return Printable([Unit, TRI](raw_ostream &OS) {
// Generic printout when TRI is missing.
if (!TRI) {
OS << "Unit~" << Unit;
return;
}
// Check for invalid register units.
if (Unit >= TRI->getNumRegUnits()) {
OS << "BadUnit~" << Unit;
return;
}
// Normal units have at least one root.
MCRegUnitRootIterator Roots(Unit, TRI);
assert(Roots.isValid() && "Unit has no roots.");
OS << TRI->getName(*Roots);
for (++Roots; Roots.isValid(); ++Roots)
OS << '~' << TRI->getName(*Roots);
});
}
Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
return Printable([Unit, TRI](raw_ostream &OS) {
if (TRI && TRI->isVirtualRegister(Unit)) {
OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
} else {
OS << PrintRegUnit(Unit, TRI);
}
});
}
} // end namespace llvm
/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
if (!RC || RC->isAllocatable())
return RC;
for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
++It) {
const TargetRegisterClass *SubRC = getRegClass(It.getID());
if (SubRC->isAllocatable())
return SubRC;
}
return nullptr;
}
/// getMinimalPhysRegClass - Returns the Register Class of a physical
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
assert(isPhysicalRegister(reg) && "reg must be a physical register");
// Pick the most sub register class of the right type that contains
// this physreg.
const TargetRegisterClass* BestRC = nullptr;
for (const TargetRegisterClass* RC : regclasses()) {
if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
BestRC = RC;
}
assert(BestRC && "Couldn't find the register class");
return BestRC;
}
/// getAllocatableSetForRC - Toggle the bits that represent allocatable
/// registers for the specific register class.
static void getAllocatableSetForRC(const MachineFunction &MF,
const TargetRegisterClass *RC, BitVector &R){
assert(RC->isAllocatable() && "invalid for nonallocatable sets");
ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
for (unsigned i = 0; i != Order.size(); ++i)
R.set(Order[i]);
}
BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC) const {
BitVector Allocatable(getNumRegs());
if (RC) {
// A register class with no allocatable subclass returns an empty set.
const TargetRegisterClass *SubClass = getAllocatableClass(RC);
if (SubClass)
getAllocatableSetForRC(MF, SubClass, Allocatable);
} else {
for (const TargetRegisterClass *C : regclasses())
if (C->isAllocatable())
getAllocatableSetForRC(MF, C, Allocatable);
}
// Mask out the reserved registers
BitVector Reserved = getReservedRegs(MF);
Allocatable &= Reserved.flip();
return Allocatable;
}
static inline
const TargetRegisterClass *firstCommonClass(const uint32_t *A,
const uint32_t *B,
const TargetRegisterInfo *TRI,
const MVT::SimpleValueType SVT =
MVT::SimpleValueType::Any) {
const MVT VT(SVT);
for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
if (unsigned Common = *A++ & *B++) {
const TargetRegisterClass *RC =
TRI->getRegClass(I + countTrailingZeros(Common));
if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
return RC;
}
return nullptr;
}
const TargetRegisterClass *
TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
const MVT::SimpleValueType SVT) const {
// First take care of the trivial cases.
if (A == B)
return A;
if (!A || !B)
return nullptr;
// Register classes are ordered topologically, so the largest common
// sub-class it the common sub-class with the smallest ID.
return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
}
const TargetRegisterClass *
TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned Idx) const {
assert(A && B && "Missing register class");
assert(Idx && "Bad sub-register index");
// Find Idx in the list of super-register indices.
for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
if (RCI.getSubReg() == Idx)
// The bit mask contains all register classes that are projected into B
// by Idx. Find a class that is also a sub-class of A.
return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
return nullptr;
}
const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
const TargetRegisterClass *RCB, unsigned SubB,
unsigned &PreA, unsigned &PreB) const {
assert(RCA && SubA && RCB && SubB && "Invalid arguments");
// Search all pairs of sub-register indices that project into RCA and RCB
// respectively. This is quadratic, but usually the sets are very small. On
// most targets like X86, there will only be a single sub-register index
// (e.g., sub_16bit projecting into GR16).
//
// The worst case is a register class like DPR on ARM.
// We have indices dsub_0..dsub_7 projecting into that class.
//
// It is very common that one register class is a sub-register of the other.
// Arrange for RCA to be the larger register so the answer will be found in
// the first iteration. This makes the search linear for the most common
// case.
const TargetRegisterClass *BestRC = nullptr;
unsigned *BestPreA = &PreA;
unsigned *BestPreB = &PreB;
if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
std::swap(RCA, RCB);
std::swap(SubA, SubB);
std::swap(BestPreA, BestPreB);
}
// Also terminate the search one we have found a register class as small as
// RCA.
unsigned MinSize = getRegSizeInBits(*RCA);
for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
// Check if a common super-register class exists for this index pair.
const TargetRegisterClass *RC =
firstCommonClass(IA.getMask(), IB.getMask(), this);
if (!RC || getRegSizeInBits(*RC) < MinSize)
continue;
// The indexes must compose identically: PreA+SubA == PreB+SubB.
unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
if (FinalA != FinalB)
continue;
// Is RC a better candidate than BestRC?
if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
continue;
// Yes, RC is the smallest super-register seen so far.
BestRC = RC;
*BestPreA = IA.getSubReg();
*BestPreB = IB.getSubReg();
// Bail early if we reached MinSize. We won't find a better candidate.
if (getRegSizeInBits(*BestRC) == MinSize)
return BestRC;
}
}
return BestRC;
}
/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
/// share the same register file.
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) {
// Same register class.
if (DefRC == SrcRC)
return true;
// Both operands are sub registers. Check if they share a register class.
unsigned SrcIdx, DefIdx;
if (SrcSubReg && DefSubReg) {
return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
SrcIdx, DefIdx) != nullptr;
}
// At most one of the register is a sub register, make it Src to avoid
// duplicating the test.
if (!SrcSubReg) {
std::swap(DefSubReg, SrcSubReg);
std::swap(DefRC, SrcRC);
}
// One of the register is a sub register, check if we can get a superclass.
if (SrcSubReg)
return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
// Plain copy.
return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
}
bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const {
// If this source does not incur a cross register bank copy, use it.
return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
}
// Compute target-independent register allocator hints to help eliminate copies.
void
TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM,
const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
// Hints with HintType != 0 were set by target-dependent code.
// Such targets must provide their own implementation of
// TRI::getRegAllocationHints to interpret those hint types.
assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
// Target-independent hints are either a physical or a virtual register.
unsigned Phys = Hint.second;
if (VRM && isVirtualRegister(Phys))
Phys = VRM->getPhys(Phys);
// Check that Phys is a valid hint in VirtReg's register class.
if (!isPhysicalRegister(Phys))
return;
if (MRI.isReserved(Phys))
return;
// Check that Phys is in the allocation order. We shouldn't heed hints
// from VirtReg's register class if they aren't in the allocation order. The
// target probably has a reason for removing the register.
if (!is_contained(Order, Phys))
return;
// All clear, tell the register allocator to prefer this register.
Hints.push_back(Phys);
}
bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
return !MF.getFunction()->hasFnAttribute("no-realign-stack");
}
bool TargetRegisterInfo::needsStackRealignment(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const Function *F = MF.getFunction();
unsigned StackAlign = TFI->getStackAlignment();
bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
F->hasFnAttribute(Attribute::StackAlignment));
if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
if (canRealignStack(MF))
return true;
DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
}
return false;
}
bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
const uint32_t *mask1) const {
unsigned N = (getNumRegs()+31) / 32;
for (unsigned I = 0; I < N; ++I)
if ((mask0[I] & mask1[I]) != mask0[I])
return false;
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
const TargetRegisterInfo *TRI) {
dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
}
#endif