1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/Target/AMDGPU/SIMachineFunctionInfo.cpp
Tom Stellard 6f27d8c6b3 AMDGPU: Remove #include "MCTargetDesc/AMDGPUMCTargetDesc.h" from common headers
Summary:
MCTargetDesc/AMDGPUMCTargetDesc.h contains enums for all the instuction
and register defintions, which are huge so we only want to include
them where needed.

This will also make it easier if we want to split the R600 and GCN
definitions into separate tablegenerated files.

I was unable to remove AMDGPUMCTargetDesc.h from SIMachineFunctionInfo.h
because it uses some enums from the header to initialize default values
for the SIMachineFunction class, so I ended up having to remove includes of
SIMachineFunctionInfo.h from headers too.

Reviewers: arsenm, nhaehnle

Reviewed By: nhaehnle

Subscribers: MatzeB, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D46272

llvm-svn: 332930
2018-05-22 02:03:23 +00:00

328 lines
10 KiB
C++

//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SIMachineFunctionInfo.h"
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include <cassert>
#include <vector>
#define MAX_LANES 64
using namespace llvm;
SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
: AMDGPUMachineFunction(MF),
PrivateSegmentBuffer(false),
DispatchPtr(false),
QueuePtr(false),
KernargSegmentPtr(false),
DispatchID(false),
FlatScratchInit(false),
GridWorkgroupCountX(false),
GridWorkgroupCountY(false),
GridWorkgroupCountZ(false),
WorkGroupIDX(false),
WorkGroupIDY(false),
WorkGroupIDZ(false),
WorkGroupInfo(false),
PrivateSegmentWaveByteOffset(false),
WorkItemIDX(false),
WorkItemIDY(false),
WorkItemIDZ(false),
ImplicitBufferPtr(false),
ImplicitArgPtr(false),
GITPtrHigh(0xffffffff),
HighBitsOf32BitAddress(0) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const Function &F = MF.getFunction();
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
WavesPerEU = ST.getWavesPerEU(F);
if (!isEntryFunction()) {
// Non-entry functions have no special inputs for now, other registers
// required for scratch access.
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
ScratchWaveOffsetReg = AMDGPU::SGPR4;
FrameOffsetReg = AMDGPU::SGPR5;
StackPtrOffsetReg = AMDGPU::SGPR32;
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(ScratchRSrcReg);
ArgInfo.PrivateSegmentWaveByteOffset =
ArgDescriptor::createRegister(ScratchWaveOffsetReg);
if (F.hasFnAttribute("amdgpu-implicitarg-ptr"))
ImplicitArgPtr = true;
} else {
if (F.hasFnAttribute("amdgpu-implicitarg-ptr"))
KernargSegmentPtr = true;
}
CallingConv::ID CC = F.getCallingConv();
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL) {
if (!F.arg_empty())
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
if (ST.debuggerEmitPrologue()) {
// Enable everything.
WorkGroupIDX = true;
WorkGroupIDY = true;
WorkGroupIDZ = true;
WorkItemIDX = true;
WorkItemIDY = true;
WorkItemIDZ = true;
} else {
if (F.hasFnAttribute("amdgpu-work-group-id-x"))
WorkGroupIDX = true;
if (F.hasFnAttribute("amdgpu-work-group-id-y"))
WorkGroupIDY = true;
if (F.hasFnAttribute("amdgpu-work-group-id-z"))
WorkGroupIDZ = true;
if (F.hasFnAttribute("amdgpu-work-item-id-x"))
WorkItemIDX = true;
if (F.hasFnAttribute("amdgpu-work-item-id-y"))
WorkItemIDY = true;
if (F.hasFnAttribute("amdgpu-work-item-id-z"))
WorkItemIDZ = true;
}
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
bool MaySpill = ST.isVGPRSpillingEnabled(F);
bool HasStackObjects = FrameInfo.hasStackObjects();
if (isEntryFunction()) {
// X, XY, and XYZ are the only supported combinations, so make sure Y is
// enabled if Z is.
if (WorkItemIDZ)
WorkItemIDY = true;
if (HasStackObjects || MaySpill) {
PrivateSegmentWaveByteOffset = true;
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
ArgInfo.PrivateSegmentWaveByteOffset
= ArgDescriptor::createRegister(AMDGPU::SGPR5);
}
}
bool IsCOV2 = ST.isAmdCodeObjectV2(MF);
if (IsCOV2) {
if (HasStackObjects || MaySpill)
PrivateSegmentBuffer = true;
if (F.hasFnAttribute("amdgpu-dispatch-ptr"))
DispatchPtr = true;
if (F.hasFnAttribute("amdgpu-queue-ptr"))
QueuePtr = true;
if (F.hasFnAttribute("amdgpu-dispatch-id"))
DispatchID = true;
} else if (ST.isMesaGfxShader(MF)) {
if (HasStackObjects || MaySpill)
ImplicitBufferPtr = true;
}
if (F.hasFnAttribute("amdgpu-kernarg-segment-ptr"))
KernargSegmentPtr = true;
if (ST.hasFlatAddressSpace() && isEntryFunction() && IsCOV2) {
// TODO: This could be refined a lot. The attribute is a poor way of
// detecting calls that may require it before argument lowering.
if (HasStackObjects || F.hasFnAttribute("amdgpu-flat-scratch"))
FlatScratchInit = true;
}
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
StringRef S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, GITPtrHigh);
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, HighBitsOf32BitAddress);
}
unsigned SIMachineFunctionInfo::addPrivateSegmentBuffer(
const SIRegisterInfo &TRI) {
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_128RegClass));
NumUserSGPRs += 4;
return ArgInfo.PrivateSegmentBuffer.getRegister();
}
unsigned SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchPtr.getRegister();
}
unsigned SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.QueuePtr.getRegister();
}
unsigned SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
ArgInfo.KernargSegmentPtr
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.KernargSegmentPtr.getRegister();
}
unsigned SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchID.getRegister();
}
unsigned SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.FlatScratchInit.getRegister();
}
unsigned SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.ImplicitBufferPtr.getRegister();
}
static bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) {
for (unsigned I = 0; CSRegs[I]; ++I) {
if (CSRegs[I] == Reg)
return true;
}
return false;
}
/// Reserve a slice of a VGPR to support spilling for FrameIndex \p FI.
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPR(MachineFunction &MF,
int FI) {
std::vector<SpilledReg> &SpillLanes = SGPRToVGPRSpills[FI];
// This has already been allocated.
if (!SpillLanes.empty())
return true;
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned WaveSize = ST.getWavefrontSize();
unsigned Size = FrameInfo.getObjectSize(FI);
assert(Size >= 4 && Size <= 64 && "invalid sgpr spill size");
assert(TRI->spillSGPRToVGPR() && "not spilling SGPRs to VGPRs");
int NumLanes = Size / 4;
const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
// Make sure to handle the case where a wide SGPR spill may span between two
// VGPRs.
for (int I = 0; I < NumLanes; ++I, ++NumVGPRSpillLanes) {
unsigned LaneVGPR;
unsigned VGPRIndex = (NumVGPRSpillLanes % WaveSize);
if (VGPRIndex == 0) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
SGPRToVGPRSpills.erase(FI);
NumVGPRSpillLanes -= I;
return false;
}
Optional<int> CSRSpillFI;
if ((FrameInfo.hasCalls() || !isEntryFunction()) && CSRegs &&
isCalleeSavedReg(CSRegs, LaneVGPR)) {
CSRSpillFI = FrameInfo.CreateSpillStackObject(4, 4);
}
SpillVGPRs.push_back(SGPRSpillVGPRCSR(LaneVGPR, CSRSpillFI));
// Add this register as live-in to all blocks to avoid machine verifer
// complaining about use of an undefined physical register.
for (MachineBasicBlock &BB : MF)
BB.addLiveIn(LaneVGPR);
} else {
LaneVGPR = SpillVGPRs.back().VGPR;
}
SpillLanes.push_back(SpilledReg(LaneVGPR, VGPRIndex));
}
return true;
}
void SIMachineFunctionInfo::removeSGPRToVGPRFrameIndices(MachineFrameInfo &MFI) {
for (auto &R : SGPRToVGPRSpills)
MFI.RemoveStackObject(R.first);
}
/// \returns VGPR used for \p Dim' work item ID.
unsigned SIMachineFunctionInfo::getWorkItemIDVGPR(unsigned Dim) const {
switch (Dim) {
case 0:
assert(hasWorkItemIDX());
return AMDGPU::VGPR0;
case 1:
assert(hasWorkItemIDY());
return AMDGPU::VGPR1;
case 2:
assert(hasWorkItemIDZ());
return AMDGPU::VGPR2;
}
llvm_unreachable("unexpected dimension");
}
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
return AMDGPU::SGPR0 + NumUserSGPRs;
}
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
}