1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Analysis/BlockFrequencyInfoImpl.cpp
Hiroshi Yamauchi fcb2bf76aa [BFI] Add a debug check for unknown block queries.
Summary:
Add a debug check for frequency queries for unknown blocks (typically blocks
that are created after BFI is computed but their frequencies are not
communicated to BFI.)

This is useful for detecting and debugging missed BFI updates.

This is debug build only and disabled behind a flag.

Reviewers: davidxl

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73920
2020-02-04 10:05:28 -08:00

867 lines
29 KiB
C++

//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <list>
#include <numeric>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::bfi_detail;
#define DEBUG_TYPE "block-freq"
cl::opt<bool> CheckBFIUnknownBlockQueries(
"check-bfi-unknown-block-queries",
cl::init(false), cl::Hidden,
cl::desc("Check if block frequency is queried for an unknown block "
"for debugging missed BFI updates"));
ScaledNumber<uint64_t> BlockMass::toScaled() const {
if (isFull())
return ScaledNumber<uint64_t>(1, 0);
return ScaledNumber<uint64_t>(getMass() + 1, -64);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
#endif
static char getHexDigit(int N) {
assert(N < 16);
if (N < 10)
return '0' + N;
return 'a' + N - 10;
}
raw_ostream &BlockMass::print(raw_ostream &OS) const {
for (int Digits = 0; Digits < 16; ++Digits)
OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
return OS;
}
namespace {
using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
using Distribution = BlockFrequencyInfoImplBase::Distribution;
using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
using LoopData = BlockFrequencyInfoImplBase::LoopData;
using Weight = BlockFrequencyInfoImplBase::Weight;
using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
/// Dithering mass distributer.
///
/// This class splits up a single mass into portions by weight, dithering to
/// spread out error. No mass is lost. The dithering precision depends on the
/// precision of the product of \a BlockMass and \a BranchProbability.
///
/// The distribution algorithm follows.
///
/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
/// mass to distribute in \a RemMass.
///
/// 2. For each portion:
///
/// 1. Construct a branch probability, P, as the portion's weight divided
/// by the current value of \a RemWeight.
/// 2. Calculate the portion's mass as \a RemMass times P.
/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
/// the current portion's weight and mass.
struct DitheringDistributer {
uint32_t RemWeight;
BlockMass RemMass;
DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
BlockMass takeMass(uint32_t Weight);
};
} // end anonymous namespace
DitheringDistributer::DitheringDistributer(Distribution &Dist,
const BlockMass &Mass) {
Dist.normalize();
RemWeight = Dist.Total;
RemMass = Mass;
}
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
assert(Weight && "invalid weight");
assert(Weight <= RemWeight);
BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
// Decrement totals (dither).
RemWeight -= Weight;
RemMass -= Mass;
return Mass;
}
void Distribution::add(const BlockNode &Node, uint64_t Amount,
Weight::DistType Type) {
assert(Amount && "invalid weight of 0");
uint64_t NewTotal = Total + Amount;
// Check for overflow. It should be impossible to overflow twice.
bool IsOverflow = NewTotal < Total;
assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
DidOverflow |= IsOverflow;
// Update the total.
Total = NewTotal;
// Save the weight.
Weights.push_back(Weight(Type, Node, Amount));
}
static void combineWeight(Weight &W, const Weight &OtherW) {
assert(OtherW.TargetNode.isValid());
if (!W.Amount) {
W = OtherW;
return;
}
assert(W.Type == OtherW.Type);
assert(W.TargetNode == OtherW.TargetNode);
assert(OtherW.Amount && "Expected non-zero weight");
if (W.Amount > W.Amount + OtherW.Amount)
// Saturate on overflow.
W.Amount = UINT64_MAX;
else
W.Amount += OtherW.Amount;
}
static void combineWeightsBySorting(WeightList &Weights) {
// Sort so edges to the same node are adjacent.
llvm::sort(Weights, [](const Weight &L, const Weight &R) {
return L.TargetNode < R.TargetNode;
});
// Combine adjacent edges.
WeightList::iterator O = Weights.begin();
for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
++O, (I = L)) {
*O = *I;
// Find the adjacent weights to the same node.
for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
combineWeight(*O, *L);
}
// Erase extra entries.
Weights.erase(O, Weights.end());
}
static void combineWeightsByHashing(WeightList &Weights) {
// Collect weights into a DenseMap.
using HashTable = DenseMap<BlockNode::IndexType, Weight>;
HashTable Combined(NextPowerOf2(2 * Weights.size()));
for (const Weight &W : Weights)
combineWeight(Combined[W.TargetNode.Index], W);
// Check whether anything changed.
if (Weights.size() == Combined.size())
return;
// Fill in the new weights.
Weights.clear();
Weights.reserve(Combined.size());
for (const auto &I : Combined)
Weights.push_back(I.second);
}
static void combineWeights(WeightList &Weights) {
// Use a hash table for many successors to keep this linear.
if (Weights.size() > 128) {
combineWeightsByHashing(Weights);
return;
}
combineWeightsBySorting(Weights);
}
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
assert(Shift >= 0);
assert(Shift < 64);
if (!Shift)
return N;
return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
}
void Distribution::normalize() {
// Early exit for termination nodes.
if (Weights.empty())
return;
// Only bother if there are multiple successors.
if (Weights.size() > 1)
combineWeights(Weights);
// Early exit when combined into a single successor.
if (Weights.size() == 1) {
Total = 1;
Weights.front().Amount = 1;
return;
}
// Determine how much to shift right so that the total fits into 32-bits.
//
// If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
// for each weight can cause a 32-bit overflow.
int Shift = 0;
if (DidOverflow)
Shift = 33;
else if (Total > UINT32_MAX)
Shift = 33 - countLeadingZeros(Total);
// Early exit if nothing needs to be scaled.
if (!Shift) {
// If we didn't overflow then combineWeights() shouldn't have changed the
// sum of the weights, but let's double-check.
assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
[](uint64_t Sum, const Weight &W) {
return Sum + W.Amount;
}) &&
"Expected total to be correct");
return;
}
// Recompute the total through accumulation (rather than shifting it) so that
// it's accurate after shifting and any changes combineWeights() made above.
Total = 0;
// Sum the weights to each node and shift right if necessary.
for (Weight &W : Weights) {
// Scale down below UINT32_MAX. Since Shift is larger than necessary, we
// can round here without concern about overflow.
assert(W.TargetNode.isValid());
W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
assert(W.Amount <= UINT32_MAX);
// Update the total.
Total += W.Amount;
}
assert(Total <= UINT32_MAX);
}
void BlockFrequencyInfoImplBase::clear() {
// Swap with a default-constructed std::vector, since std::vector<>::clear()
// does not actually clear heap storage.
std::vector<FrequencyData>().swap(Freqs);
IsIrrLoopHeader.clear();
std::vector<WorkingData>().swap(Working);
Loops.clear();
}
/// Clear all memory not needed downstream.
///
/// Releases all memory not used downstream. In particular, saves Freqs.
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
BFI.clear();
BFI.Freqs = std::move(SavedFreqs);
BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
}
bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
const LoopData *OuterLoop,
const BlockNode &Pred,
const BlockNode &Succ,
uint64_t Weight) {
if (!Weight)
Weight = 1;
auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
return OuterLoop && OuterLoop->isHeader(Node);
};
BlockNode Resolved = Working[Succ.Index].getResolvedNode();
#ifndef NDEBUG
auto debugSuccessor = [&](const char *Type) {
dbgs() << " =>"
<< " [" << Type << "] weight = " << Weight;
if (!isLoopHeader(Resolved))
dbgs() << ", succ = " << getBlockName(Succ);
if (Resolved != Succ)
dbgs() << ", resolved = " << getBlockName(Resolved);
dbgs() << "\n";
};
(void)debugSuccessor;
#endif
if (isLoopHeader(Resolved)) {
LLVM_DEBUG(debugSuccessor("backedge"));
Dist.addBackedge(Resolved, Weight);
return true;
}
if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
LLVM_DEBUG(debugSuccessor(" exit "));
Dist.addExit(Resolved, Weight);
return true;
}
if (Resolved < Pred) {
if (!isLoopHeader(Pred)) {
// If OuterLoop is an irreducible loop, we can't actually handle this.
assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
"unhandled irreducible control flow");
// Irreducible backedge. Abort.
LLVM_DEBUG(debugSuccessor("abort!!!"));
return false;
}
// If "Pred" is a loop header, then this isn't really a backedge; rather,
// OuterLoop must be irreducible. These false backedges can come only from
// secondary loop headers.
assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
"unhandled irreducible control flow");
}
LLVM_DEBUG(debugSuccessor(" local "));
Dist.addLocal(Resolved, Weight);
return true;
}
bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
// Copy the exit map into Dist.
for (const auto &I : Loop.Exits)
if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
I.second.getMass()))
// Irreducible backedge.
return false;
return true;
}
/// Compute the loop scale for a loop.
void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
// Compute loop scale.
LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
// Infinite loops need special handling. If we give the back edge an infinite
// mass, they may saturate all the other scales in the function down to 1,
// making all the other region temperatures look exactly the same. Choose an
// arbitrary scale to avoid these issues.
//
// FIXME: An alternate way would be to select a symbolic scale which is later
// replaced to be the maximum of all computed scales plus 1. This would
// appropriately describe the loop as having a large scale, without skewing
// the final frequency computation.
const Scaled64 InfiniteLoopScale(1, 12);
// LoopScale == 1 / ExitMass
// ExitMass == HeadMass - BackedgeMass
BlockMass TotalBackedgeMass;
for (auto &Mass : Loop.BackedgeMass)
TotalBackedgeMass += Mass;
BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
// Block scale stores the inverse of the scale. If this is an infinite loop,
// its exit mass will be zero. In this case, use an arbitrary scale for the
// loop scale.
Loop.Scale =
ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
<< BlockMass::getFull() << " - " << TotalBackedgeMass
<< ")\n"
<< " - scale = " << Loop.Scale << "\n");
}
/// Package up a loop.
void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
// Clear the subloop exits to prevent quadratic memory usage.
for (const BlockNode &M : Loop.Nodes) {
if (auto *Loop = Working[M.Index].getPackagedLoop())
Loop->Exits.clear();
LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
}
Loop.IsPackaged = true;
}
#ifndef NDEBUG
static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
const DitheringDistributer &D, const BlockNode &T,
const BlockMass &M, const char *Desc) {
dbgs() << " => assign " << M << " (" << D.RemMass << ")";
if (Desc)
dbgs() << " [" << Desc << "]";
if (T.isValid())
dbgs() << " to " << BFI.getBlockName(T);
dbgs() << "\n";
}
#endif
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
LoopData *OuterLoop,
Distribution &Dist) {
BlockMass Mass = Working[Source.Index].getMass();
LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
// Distribute mass to successors as laid out in Dist.
DitheringDistributer D(Dist, Mass);
for (const Weight &W : Dist.Weights) {
// Check for a local edge (non-backedge and non-exit).
BlockMass Taken = D.takeMass(W.Amount);
if (W.Type == Weight::Local) {
Working[W.TargetNode.Index].getMass() += Taken;
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
continue;
}
// Backedges and exits only make sense if we're processing a loop.
assert(OuterLoop && "backedge or exit outside of loop");
// Check for a backedge.
if (W.Type == Weight::Backedge) {
OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
continue;
}
// This must be an exit.
assert(W.Type == Weight::Exit);
OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
}
}
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
const Scaled64 &Min, const Scaled64 &Max) {
// Scale the Factor to a size that creates integers. Ideally, integers would
// be scaled so that Max == UINT64_MAX so that they can be best
// differentiated. However, in the presence of large frequency values, small
// frequencies are scaled down to 1, making it impossible to differentiate
// small, unequal numbers. When the spread between Min and Max frequencies
// fits well within MaxBits, we make the scale be at least 8.
const unsigned MaxBits = 64;
const unsigned SpreadBits = (Max / Min).lg();
Scaled64 ScalingFactor;
if (SpreadBits <= MaxBits - 3) {
// If the values are small enough, make the scaling factor at least 8 to
// allow distinguishing small values.
ScalingFactor = Min.inverse();
ScalingFactor <<= 3;
} else {
// If the values need more than MaxBits to be represented, saturate small
// frequency values down to 1 by using a scaling factor that benefits large
// frequency values.
ScalingFactor = Scaled64(1, MaxBits) / Max;
}
// Translate the floats to integers.
LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
<< ", factor = " << ScalingFactor << "\n");
for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
<< BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
<< ", int = " << BFI.Freqs[Index].Integer << "\n");
}
}
/// Unwrap a loop package.
///
/// Visits all the members of a loop, adjusting their BlockData according to
/// the loop's pseudo-node.
static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
<< ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
<< "\n");
Loop.Scale *= Loop.Mass.toScaled();
Loop.IsPackaged = false;
LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
// Propagate the head scale through the loop. Since members are visited in
// RPO, the head scale will be updated by the loop scale first, and then the
// final head scale will be used for updated the rest of the members.
for (const BlockNode &N : Loop.Nodes) {
const auto &Working = BFI.Working[N.Index];
Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
: BFI.Freqs[N.Index].Scaled;
Scaled64 New = Loop.Scale * F;
LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
<< New << "\n");
F = New;
}
}
void BlockFrequencyInfoImplBase::unwrapLoops() {
// Set initial frequencies from loop-local masses.
for (size_t Index = 0; Index < Working.size(); ++Index)
Freqs[Index].Scaled = Working[Index].Mass.toScaled();
for (LoopData &Loop : Loops)
unwrapLoop(*this, Loop);
}
void BlockFrequencyInfoImplBase::finalizeMetrics() {
// Unwrap loop packages in reverse post-order, tracking min and max
// frequencies.
auto Min = Scaled64::getLargest();
auto Max = Scaled64::getZero();
for (size_t Index = 0; Index < Working.size(); ++Index) {
// Update min/max scale.
Min = std::min(Min, Freqs[Index].Scaled);
Max = std::max(Max, Freqs[Index].Scaled);
}
// Convert to integers.
convertFloatingToInteger(*this, Min, Max);
// Clean up data structures.
cleanup(*this);
// Print out the final stats.
LLVM_DEBUG(dump());
}
BlockFrequency
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
if (!Node.isValid()) {
#ifndef NDEBUG
if (CheckBFIUnknownBlockQueries) {
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
report_fatal_error(OS.str());
}
#endif
return 0;
}
return Freqs[Node.Index].Integer;
}
Optional<uint64_t>
BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
const BlockNode &Node,
bool AllowSynthetic) const {
return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
AllowSynthetic);
}
Optional<uint64_t>
BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
uint64_t Freq,
bool AllowSynthetic) const {
auto EntryCount = F.getEntryCount(AllowSynthetic);
if (!EntryCount)
return None;
// Use 128 bit APInt to do the arithmetic to avoid overflow.
APInt BlockCount(128, EntryCount.getCount());
APInt BlockFreq(128, Freq);
APInt EntryFreq(128, getEntryFreq());
BlockCount *= BlockFreq;
// Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
// lshr by 1 gives EntryFreq/2.
BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
return BlockCount.getLimitedValue();
}
bool
BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
if (!Node.isValid())
return false;
return IsIrrLoopHeader.test(Node.Index);
}
Scaled64
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
if (!Node.isValid())
return Scaled64::getZero();
return Freqs[Node.Index].Scaled;
}
void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
uint64_t Freq) {
assert(Node.isValid() && "Expected valid node");
assert(Node.Index < Freqs.size() && "Expected legal index");
Freqs[Node.Index].Integer = Freq;
}
std::string
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
return {};
}
std::string
BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
}
raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
const BlockNode &Node) const {
return OS << getFloatingBlockFreq(Node);
}
raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
const BlockFrequency &Freq) const {
Scaled64 Block(Freq.getFrequency(), 0);
Scaled64 Entry(getEntryFreq(), 0);
return OS << Block / Entry;
}
void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
Start = OuterLoop.getHeader();
Nodes.reserve(OuterLoop.Nodes.size());
for (auto N : OuterLoop.Nodes)
addNode(N);
indexNodes();
}
void IrreducibleGraph::addNodesInFunction() {
Start = 0;
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
if (!BFI.Working[Index].isPackaged())
addNode(Index);
indexNodes();
}
void IrreducibleGraph::indexNodes() {
for (auto &I : Nodes)
Lookup[I.Node.Index] = &I;
}
void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
const BFIBase::LoopData *OuterLoop) {
if (OuterLoop && OuterLoop->isHeader(Succ))
return;
auto L = Lookup.find(Succ.Index);
if (L == Lookup.end())
return;
IrrNode &SuccIrr = *L->second;
Irr.Edges.push_back(&SuccIrr);
SuccIrr.Edges.push_front(&Irr);
++SuccIrr.NumIn;
}
namespace llvm {
template <> struct GraphTraits<IrreducibleGraph> {
using GraphT = bfi_detail::IrreducibleGraph;
using NodeRef = const GraphT::IrrNode *;
using ChildIteratorType = GraphT::IrrNode::iterator;
static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};
} // end namespace llvm
/// Find extra irreducible headers.
///
/// Find entry blocks and other blocks with backedges, which exist when \c G
/// contains irreducible sub-SCCs.
static void findIrreducibleHeaders(
const BlockFrequencyInfoImplBase &BFI,
const IrreducibleGraph &G,
const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
LoopData::NodeList &Headers, LoopData::NodeList &Others) {
// Map from nodes in the SCC to whether it's an entry block.
SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
// InSCC also acts the set of nodes in the graph. Seed it.
for (const auto *I : SCC)
InSCC[I] = false;
for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
auto &Irr = *I->first;
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
if (InSCC.count(P))
continue;
// This is an entry block.
I->second = true;
Headers.push_back(Irr.Node);
LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
<< "\n");
break;
}
}
assert(Headers.size() >= 2 &&
"Expected irreducible CFG; -loop-info is likely invalid");
if (Headers.size() == InSCC.size()) {
// Every block is a header.
llvm::sort(Headers);
return;
}
// Look for extra headers from irreducible sub-SCCs.
for (const auto &I : InSCC) {
// Entry blocks are already headers.
if (I.second)
continue;
auto &Irr = *I.first;
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
// Skip forward edges.
if (P->Node < Irr.Node)
continue;
// Skip predecessors from entry blocks. These can have inverted
// ordering.
if (InSCC.lookup(P))
continue;
// Store the extra header.
Headers.push_back(Irr.Node);
LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
<< "\n");
break;
}
if (Headers.back() == Irr.Node)
// Added this as a header.
continue;
// This is not a header.
Others.push_back(Irr.Node);
LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
}
llvm::sort(Headers);
llvm::sort(Others);
}
static void createIrreducibleLoop(
BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
// Translate the SCC into RPO.
LLVM_DEBUG(dbgs() << " - found-scc\n");
LoopData::NodeList Headers;
LoopData::NodeList Others;
findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
Headers.end(), Others.begin(), Others.end());
// Update loop hierarchy.
for (const auto &N : Loop->Nodes)
if (BFI.Working[N.Index].isLoopHeader())
BFI.Working[N.Index].Loop->Parent = &*Loop;
else
BFI.Working[N.Index].Loop = &*Loop;
}
iterator_range<std::list<LoopData>::iterator>
BlockFrequencyInfoImplBase::analyzeIrreducible(
const IrreducibleGraph &G, LoopData *OuterLoop,
std::list<LoopData>::iterator Insert) {
assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
if (I->size() < 2)
continue;
// Translate the SCC into RPO.
createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
}
if (OuterLoop)
return make_range(std::next(Prev), Insert);
return make_range(Loops.begin(), Insert);
}
void
BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
OuterLoop.Exits.clear();
for (auto &Mass : OuterLoop.BackedgeMass)
Mass = BlockMass::getEmpty();
auto O = OuterLoop.Nodes.begin() + 1;
for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
if (!Working[I->Index].isPackaged())
*O++ = *I;
OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
}
void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
// Since the loop has more than one header block, the mass flowing back into
// each header will be different. Adjust the mass in each header loop to
// reflect the masses flowing through back edges.
//
// To do this, we distribute the initial mass using the backedge masses
// as weights for the distribution.
BlockMass LoopMass = BlockMass::getFull();
Distribution Dist;
LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
auto &HeaderNode = Loop.Nodes[H];
auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
<< getBlockName(HeaderNode) << ": " << BackedgeMass
<< "\n");
if (BackedgeMass.getMass() > 0)
Dist.addLocal(HeaderNode, BackedgeMass.getMass());
else
LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
}
DitheringDistributer D(Dist, LoopMass);
LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
<< " to headers using above weights\n");
for (const Weight &W : Dist.Weights) {
BlockMass Taken = D.takeMass(W.Amount);
assert(W.Type == Weight::Local && "all weights should be local");
Working[W.TargetNode.Index].getMass() = Taken;
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
}
}
void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
BlockMass LoopMass = BlockMass::getFull();
DitheringDistributer D(Dist, LoopMass);
for (const Weight &W : Dist.Weights) {
BlockMass Taken = D.takeMass(W.Amount);
assert(W.Type == Weight::Local && "all weights should be local");
Working[W.TargetNode.Index].getMass() = Taken;
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
}
}