mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
253de2bc90
Currently, DAG combiner uses (fmul (rsqrt x) x) to estimate square root of x. However, this method would return NaN if x is +Inf, which is incorrect. Reviewed By: spatel Differential Revision: https://reviews.llvm.org/D76853
193 lines
4.9 KiB
LLVM
193 lines
4.9 KiB
LLVM
; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s
|
|
|
|
declare float @llvm.sqrt.f32(float)
|
|
declare double @llvm.sqrt.f64(double)
|
|
|
|
; CHECK-LABEL: sqrt_div(
|
|
; CHECK: sqrt.rn.f32
|
|
; CHECK: div.rn.f32
|
|
define float @sqrt_div(float %a, float %b) {
|
|
%t1 = tail call float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_fast(
|
|
; CHECK: sqrt.rn.f32
|
|
; CHECK: div.approx.f32
|
|
define float @sqrt_div_fast(float %a, float %b) #0 {
|
|
%t1 = tail call float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_fast_ninf(
|
|
; CHECK: sqrt.approx.f32
|
|
; CHECK: div.approx.f32
|
|
define float @sqrt_div_fast_ninf(float %a, float %b) #0 {
|
|
%t1 = tail call ninf float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_ftz(
|
|
; CHECK: sqrt.rn.ftz.f32
|
|
; CHECK: div.rn.ftz.f32
|
|
define float @sqrt_div_ftz(float %a, float %b) #1 {
|
|
%t1 = tail call float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_fast_ftz(
|
|
; CHECK: sqrt.rn.ftz.f32
|
|
; CHECK: div.approx.ftz.f32
|
|
define float @sqrt_div_fast_ftz(float %a, float %b) #0 #1 {
|
|
%t1 = tail call float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_fast_ftz_ninf(
|
|
; CHECK: sqrt.approx.ftz.f32
|
|
; CHECK: div.approx.ftz.f32
|
|
define float @sqrt_div_fast_ftz_ninf(float %a, float %b) #0 #1 {
|
|
%t1 = tail call ninf float @llvm.sqrt.f32(float %a)
|
|
%t2 = fdiv float %t1, %b
|
|
ret float %t2
|
|
}
|
|
|
|
; There are no fast-math or ftz versions of sqrt and div for f64. We use
|
|
; reciprocal(rsqrt(x)) for sqrt(x), and emit a vanilla divide.
|
|
|
|
; CHECK-LABEL: sqrt_div_fast_ftz_f64(
|
|
; CHECK: sqrt.rn.f64
|
|
; CHECK: div.rn.f64
|
|
define double @sqrt_div_fast_ftz_f64(double %a, double %b) #0 #1 {
|
|
%t1 = tail call double @llvm.sqrt.f64(double %a)
|
|
%t2 = fdiv double %t1, %b
|
|
ret double %t2
|
|
}
|
|
|
|
; CHECK-LABEL: sqrt_div_fast_ftz_f64_ninf(
|
|
; CHECK: rsqrt.approx.f64
|
|
; CHECK: rcp.approx.ftz.f64
|
|
; CHECK: div.rn.f64
|
|
define double @sqrt_div_fast_ftz_f64_ninf(double %a, double %b) #0 #1 {
|
|
%t1 = tail call ninf double @llvm.sqrt.f64(double %a)
|
|
%t2 = fdiv double %t1, %b
|
|
ret double %t2
|
|
}
|
|
|
|
; CHECK-LABEL: rsqrt(
|
|
; CHECK-NOT: rsqrt.approx
|
|
; CHECK: sqrt.rn.f32
|
|
; CHECK-NOT: rsqrt.approx
|
|
define float @rsqrt(float %a) {
|
|
%b = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %b
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: rsqrt_fast(
|
|
; CHECK-NOT: div.
|
|
; CHECK-NOT: sqrt.
|
|
; CHECK: rsqrt.approx.f32
|
|
; CHECK-NOT: div.
|
|
; CHECK-NOT: sqrt.
|
|
define float @rsqrt_fast(float %a) #0 {
|
|
%b = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %b
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: rsqrt_fast_ftz(
|
|
; CHECK-NOT: div.
|
|
; CHECK-NOT: sqrt.
|
|
; CHECK: rsqrt.approx.ftz.f32
|
|
; CHECK-NOT: div.
|
|
; CHECK-NOT: sqrt.
|
|
define float @rsqrt_fast_ftz(float %a) #0 #1 {
|
|
%b = tail call float @llvm.sqrt.f32(float %a)
|
|
%ret = fdiv float 1.0, %b
|
|
ret float %ret
|
|
}
|
|
|
|
; CHECK-LABEL: fadd
|
|
; CHECK: add.rn.f32
|
|
define float @fadd(float %a, float %b) {
|
|
%t1 = fadd float %a, %b
|
|
ret float %t1
|
|
}
|
|
|
|
; CHECK-LABEL: fadd_ftz
|
|
; CHECK: add.rn.ftz.f32
|
|
define float @fadd_ftz(float %a, float %b) #1 {
|
|
%t1 = fadd float %a, %b
|
|
ret float %t1
|
|
}
|
|
|
|
declare float @llvm.sin.f32(float)
|
|
declare float @llvm.cos.f32(float)
|
|
|
|
; CHECK-LABEL: fsin_approx
|
|
; CHECK: sin.approx.f32
|
|
define float @fsin_approx(float %a) #0 {
|
|
%r = tail call float @llvm.sin.f32(float %a)
|
|
ret float %r
|
|
}
|
|
|
|
; CHECK-LABEL: fcos_approx
|
|
; CHECK: cos.approx.f32
|
|
define float @fcos_approx(float %a) #0 {
|
|
%r = tail call float @llvm.cos.f32(float %a)
|
|
ret float %r
|
|
}
|
|
|
|
; CHECK-LABEL: repeated_div_recip_allowed
|
|
define float @repeated_div_recip_allowed(i1 %pred, float %a, float %b, float %divisor) {
|
|
; CHECK: rcp.rn.f32
|
|
; CHECK: mul.rn.f32
|
|
; CHECK: mul.rn.f32
|
|
%x = fdiv arcp float %a, %divisor
|
|
%y = fdiv arcp float %b, %divisor
|
|
%z = select i1 %pred, float %x, float %y
|
|
ret float %z
|
|
}
|
|
|
|
; CHECK-LABEL: repeated_div_recip_allowed_ftz
|
|
define float @repeated_div_recip_allowed_ftz(i1 %pred, float %a, float %b, float %divisor) #1 {
|
|
; CHECK: rcp.rn.ftz.f32
|
|
; CHECK: mul.rn.ftz.f32
|
|
; CHECK: mul.rn.ftz.f32
|
|
%x = fdiv arcp float %a, %divisor
|
|
%y = fdiv arcp float %b, %divisor
|
|
%z = select i1 %pred, float %x, float %y
|
|
ret float %z
|
|
}
|
|
|
|
; CHECK-LABEL: repeated_div_fast
|
|
define float @repeated_div_fast(i1 %pred, float %a, float %b, float %divisor) #0 {
|
|
; CHECK: rcp.approx.f32
|
|
; CHECK: mul.f32
|
|
; CHECK: mul.f32
|
|
%x = fdiv float %a, %divisor
|
|
%y = fdiv float %b, %divisor
|
|
%z = select i1 %pred, float %x, float %y
|
|
ret float %z
|
|
}
|
|
|
|
; CHECK-LABEL: repeated_div_fast_ftz
|
|
define float @repeated_div_fast_ftz(i1 %pred, float %a, float %b, float %divisor) #0 #1 {
|
|
; CHECK: rcp.approx.ftz.f32
|
|
; CHECK: mul.ftz.f32
|
|
; CHECK: mul.ftz.f32
|
|
%x = fdiv float %a, %divisor
|
|
%y = fdiv float %b, %divisor
|
|
%z = select i1 %pred, float %x, float %y
|
|
ret float %z
|
|
}
|
|
|
|
attributes #0 = { "unsafe-fp-math" = "true" }
|
|
attributes #1 = { "denormal-fp-math-f32" = "preserve-sign" }
|