1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/test/Transforms/IndVarSimplify/exit_value_test2.ll
Roman Lebedev ab734775f8 [SCEV] SCEVExpander::isHighCostExpansionHelper(): cost-model add/mul
Summary:
While this resolves the regression from D73722 in `llvm/test/Transforms/IndVarSimplify/exit_value_test2.ll`,
this now regresses `llvm/test/Transforms/IndVarSimplify/elim-extend.ll` `@nestedIV` test,
we no longer can perform that expansion within default budget of `4`, but require budget of `6`.
That regression is being addressed by D73777.

The basic idea here is simple.
```
Op0,  Op1, Op2 ...
 |     |    |
 \--+--/    |
    |       |
    \---+---/
```
I.e. given N operands, we will have N-1 operations,
so we have to add cost of an add (mul) for **every** Op processed,
**except** the first one, plus we need to recurse into *every* Op.

I'm guessing there's already canonicalization that ensures we won't
have `1` operand in `scMulExpr`, and no `0` in `scAddExpr`/`scMulExpr`.

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73728
2020-02-25 23:05:58 +03:00

115 lines
5.0 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; PR23538
; RUN: opt < %s -indvars -loop-deletion -S | FileCheck %s
; Check IndVarSimplify should not replace exit value because or else
; udiv will be introduced by expand and the cost will be high.
declare void @_Z3mixRjj(i32* dereferenceable(4), i32)
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)
define i32 @_Z3fooPKcjj(i8* nocapture readonly %s, i32 %len, i32 %c) {
; CHECK-LABEL: @_Z3fooPKcjj(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A:%.*]] = alloca i32, align 4
; CHECK-NEXT: [[T:%.*]] = bitcast i32* [[A]] to i8*
; CHECK-NEXT: call void @llvm.lifetime.start.p0i8(i64 4, i8* [[T]])
; CHECK-NEXT: store i32 -1640531527, i32* [[A]], align 4
; CHECK-NEXT: [[CMP8:%.*]] = icmp ugt i32 [[LEN:%.*]], 11
; CHECK-NEXT: br i1 [[CMP8]], label [[WHILE_BODY_LR_PH:%.*]], label [[WHILE_END:%.*]]
; CHECK: while.body.lr.ph:
; CHECK-NEXT: br label [[WHILE_BODY:%.*]]
; CHECK: while.body:
; CHECK-NEXT: [[KEYLEN_010:%.*]] = phi i32 [ [[LEN]], [[WHILE_BODY_LR_PH]] ], [ [[SUB:%.*]], [[WHILE_BODY]] ]
; CHECK-NEXT: [[S_ADDR_09:%.*]] = phi i8* [ [[S:%.*]], [[WHILE_BODY_LR_PH]] ], [ [[ADD_PTR:%.*]], [[WHILE_BODY]] ]
; CHECK-NEXT: [[T1:%.*]] = bitcast i8* [[S_ADDR_09]] to i32*
; CHECK-NEXT: [[T2:%.*]] = load i32, i32* [[T1]], align 4
; CHECK-NEXT: [[SHL_I:%.*]] = shl i32 [[T2]], 1
; CHECK-NEXT: [[AND_I:%.*]] = and i32 [[SHL_I]], 16843008
; CHECK-NEXT: [[T3:%.*]] = load i32, i32* [[A]], align 4
; CHECK-NEXT: [[SUB_I:%.*]] = add i32 [[T3]], [[T2]]
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[SUB_I]], [[AND_I]]
; CHECK-NEXT: store i32 [[ADD]], i32* [[A]], align 4
; CHECK-NEXT: [[ADD_PTR]] = getelementptr inbounds i8, i8* [[S_ADDR_09]], i64 12
; CHECK-NEXT: [[SUB]] = add i32 [[KEYLEN_010]], -12
; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i32 [[SUB]], 11
; CHECK-NEXT: br i1 [[CMP]], label [[WHILE_BODY]], label [[WHILE_COND_WHILE_END_CRIT_EDGE:%.*]]
; CHECK: while.cond.while.end_crit_edge:
; CHECK-NEXT: [[SUB_LCSSA:%.*]] = phi i32 [ [[SUB]], [[WHILE_BODY]] ]
; CHECK-NEXT: br label [[WHILE_END]]
; CHECK: while.end:
; CHECK-NEXT: [[KEYLEN_0_LCSSA:%.*]] = phi i32 [ [[SUB_LCSSA]], [[WHILE_COND_WHILE_END_CRIT_EDGE]] ], [ [[LEN]], [[ENTRY:%.*]] ]
; CHECK-NEXT: call void @_Z3mixRjj(i32* dereferenceable(4) [[A]], i32 [[KEYLEN_0_LCSSA]])
; CHECK-NEXT: [[T4:%.*]] = load i32, i32* [[A]], align 4
; CHECK-NEXT: call void @llvm.lifetime.end.p0i8(i64 4, i8* [[T]])
; CHECK-NEXT: ret i32 [[T4]]
;
entry:
%a = alloca i32, align 4
%t = bitcast i32* %a to i8*
call void @llvm.lifetime.start.p0i8(i64 4, i8* %t)
store i32 -1640531527, i32* %a, align 4
%cmp8 = icmp ugt i32 %len, 11
br i1 %cmp8, label %while.body.lr.ph, label %while.end
while.body.lr.ph: ; preds = %entry
br label %while.body
while.body: ; preds = %while.body, %while.body.lr.ph
%keylen.010 = phi i32 [ %len, %while.body.lr.ph ], [ %sub, %while.body ]
%s.addr.09 = phi i8* [ %s, %while.body.lr.ph ], [ %add.ptr, %while.body ]
%t1 = bitcast i8* %s.addr.09 to i32*
%t2 = load i32, i32* %t1, align 4
%shl.i = shl i32 %t2, 1
%and.i = and i32 %shl.i, 16843008
%t3 = load i32, i32* %a, align 4
%sub.i = add i32 %t3, %t2
%add = sub i32 %sub.i, %and.i
store i32 %add, i32* %a, align 4
%add.ptr = getelementptr inbounds i8, i8* %s.addr.09, i64 12
%sub = add i32 %keylen.010, -12
%cmp = icmp ugt i32 %sub, 11
br i1 %cmp, label %while.body, label %while.cond.while.end_crit_edge
while.cond.while.end_crit_edge: ; preds = %while.body
%sub.lcssa = phi i32 [ %sub, %while.body ]
br label %while.end
while.end: ; preds = %while.cond.while.end_crit_edge, %entry
%keylen.0.lcssa = phi i32 [ %sub.lcssa, %while.cond.while.end_crit_edge ], [ %len, %entry ]
call void @_Z3mixRjj(i32* dereferenceable(4) %a, i32 %keylen.0.lcssa)
%t4 = load i32, i32* %a, align 4
call void @llvm.lifetime.end.p0i8(i64 4, i8* %t)
ret i32 %t4
}
define i32 @zero_backedge_count_test(i32 %unknown_init, i32* %unknown_mem) {
; CHECK-LABEL: @zero_backedge_count_test(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[UNKNOWN_NEXT:%.*]] = load volatile i32, i32* [[UNKNOWN_MEM:%.*]]
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[LEAVE:%.*]]
; CHECK: leave:
; CHECK-NEXT: ret i32 [[UNKNOWN_INIT:%.*]]
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [ %iv.inc, %loop ]
%unknown_phi = phi i32 [ %unknown_init, %entry ], [ %unknown_next, %loop ]
%iv.inc = add i32 %iv, 1
%be_taken = icmp ne i32 %iv.inc, 1
%unknown_next = load volatile i32, i32* %unknown_mem
br i1 %be_taken, label %loop, label %leave
leave:
; We can fold %unknown_phi even though the backedge value for it is completely
; unknown, since we can prove that the loop's backedge taken count is 0.
%exit_val = phi i32 [ %unknown_phi, %loop ]
ret i32 %exit_val
}