1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/tools/llvm-mca/lib/InstrBuilder.cpp

542 lines
20 KiB
C++

//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstrBuilder interface.
///
//===----------------------------------------------------------------------===//
#include "InstrBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
const llvm::MCInstrInfo &mcii,
const llvm::MCRegisterInfo &mri,
const llvm::MCInstrAnalysis &mcia)
: STI(sti), MCII(mcii), MRI(mri), MCIA(mcia) {
computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
}
static void initializeUsedResources(InstrDesc &ID,
const MCSchedClassDesc &SCDesc,
const MCSubtargetInfo &STI,
ArrayRef<uint64_t> ProcResourceMasks) {
const MCSchedModel &SM = STI.getSchedModel();
// Populate resources consumed.
using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
std::vector<ResourcePlusCycles> Worklist;
// Track cycles contributed by resources that are in a "Super" relationship.
// This is required if we want to correctly match the behavior of method
// SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
// of "consumed" processor resources and resource cycles, the logic in
// ExpandProcResource() doesn't update the number of resource cycles
// contributed by a "Super" resource to a group.
// We need to take this into account when we find that a processor resource is
// part of a group, and it is also used as the "Super" of other resources.
// This map stores the number of cycles contributed by sub-resources that are
// part of a "Super" resource. The key value is the "Super" resource mask ID.
DenseMap<uint64_t, unsigned> SuperResources;
for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
if (PR.BufferSize != -1)
ID.Buffers.push_back(Mask);
CycleSegment RCy(0, PRE->Cycles, false);
Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
if (PR.SuperIdx) {
uint64_t Super = ProcResourceMasks[PR.SuperIdx];
SuperResources[Super] += PRE->Cycles;
}
}
// Sort elements by mask popcount, so that we prioritize resource units over
// resource groups, and smaller groups over larger groups.
sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
unsigned popcntA = countPopulation(A.first);
unsigned popcntB = countPopulation(B.first);
if (popcntA < popcntB)
return true;
if (popcntA > popcntB)
return false;
return A.first < B.first;
});
uint64_t UsedResourceUnits = 0;
// Remove cycles contributed by smaller resources.
for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
ResourcePlusCycles &A = Worklist[I];
if (!A.second.size()) {
A.second.NumUnits = 0;
A.second.setReserved();
ID.Resources.emplace_back(A);
continue;
}
ID.Resources.emplace_back(A);
uint64_t NormalizedMask = A.first;
if (countPopulation(A.first) == 1) {
UsedResourceUnits |= A.first;
} else {
// Remove the leading 1 from the resource group mask.
NormalizedMask ^= PowerOf2Floor(NormalizedMask);
}
for (unsigned J = I + 1; J < E; ++J) {
ResourcePlusCycles &B = Worklist[J];
if ((NormalizedMask & B.first) == NormalizedMask) {
B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
if (countPopulation(B.first) > 1)
B.second.NumUnits++;
}
}
}
// A SchedWrite may specify a number of cycles in which a resource group
// is reserved. For example (on target x86; cpu Haswell):
//
// SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
// let ResourceCycles = [2, 2, 3];
// }
//
// This means:
// Resource units HWPort0 and HWPort1 are both used for 2cy.
// Resource group HWPort01 is the union of HWPort0 and HWPort1.
// Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
// will not be usable for 2 entire cycles from instruction issue.
//
// On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
// of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
// extra delay on top of the 2 cycles latency.
// During those extra cycles, HWPort01 is not usable by other instructions.
for (ResourcePlusCycles &RPC : ID.Resources) {
if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
// Remove the leading 1 from the resource group mask.
uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
if ((Mask & UsedResourceUnits) == Mask)
RPC.second.setReserved();
}
}
LLVM_DEBUG({
for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
dbgs() << "\t\tMask=" << R.first << ", cy=" << R.second.size() << '\n';
for (const uint64_t R : ID.Buffers)
dbgs() << "\t\tBuffer Mask=" << R << '\n';
});
}
static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
const MCSchedClassDesc &SCDesc,
const MCSubtargetInfo &STI) {
if (MCDesc.isCall()) {
// We cannot estimate how long this call will take.
// Artificially set an arbitrarily high latency (100cy).
ID.MaxLatency = 100U;
return;
}
int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
// If latency is unknown, then conservatively assume a MaxLatency of 100cy.
ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
}
Error InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
unsigned SchedClassID) {
const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
// These are for now the (strong) assumptions made by this algorithm:
// * The number of explicit and implicit register definitions in a MCInst
// matches the number of explicit and implicit definitions according to
// the opcode descriptor (MCInstrDesc).
// * Register definitions take precedence over register uses in the operands
// list.
// * If an opcode specifies an optional definition, then the optional
// definition is always the last operand in the sequence, and it can be
// set to zero (i.e. "no register").
//
// These assumptions work quite well for most out-of-order in-tree targets
// like x86. This is mainly because the vast majority of instructions is
// expanded to MCInst using a straightforward lowering logic that preserves
// the ordering of the operands.
unsigned NumExplicitDefs = MCDesc.getNumDefs();
unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
if (MCDesc.hasOptionalDef())
TotalDefs++;
ID.Writes.resize(TotalDefs);
// Iterate over the operands list, and skip non-register operands.
// The first NumExplictDefs register operands are expected to be register
// definitions.
unsigned CurrentDef = 0;
unsigned i = 0;
for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
const MCOperand &Op = MCI.getOperand(i);
if (!Op.isReg())
continue;
WriteDescriptor &Write = ID.Writes[CurrentDef];
Write.OpIndex = i;
if (CurrentDef < NumWriteLatencyEntries) {
const MCWriteLatencyEntry &WLE =
*STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
// Conservatively default to MaxLatency.
Write.Latency =
WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
} else {
// Assign a default latency for this write.
Write.Latency = ID.MaxLatency;
Write.SClassOrWriteResourceID = 0;
}
Write.IsOptionalDef = false;
LLVM_DEBUG({
dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
<< ", Latency=" << Write.Latency
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
});
CurrentDef++;
}
if (CurrentDef != NumExplicitDefs) {
return make_error<InstructionError<MCInst>>(
"Expected more register operand definitions.", MCI);
}
CurrentDef = 0;
for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
unsigned Index = NumExplicitDefs + CurrentDef;
WriteDescriptor &Write = ID.Writes[Index];
Write.OpIndex = ~CurrentDef;
Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
if (Index < NumWriteLatencyEntries) {
const MCWriteLatencyEntry &WLE =
*STI.getWriteLatencyEntry(&SCDesc, Index);
// Conservatively default to MaxLatency.
Write.Latency =
WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
} else {
// Assign a default latency for this write.
Write.Latency = ID.MaxLatency;
Write.SClassOrWriteResourceID = 0;
}
Write.IsOptionalDef = false;
assert(Write.RegisterID != 0 && "Expected a valid phys register!");
LLVM_DEBUG({
dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
<< ", PhysReg=" << MRI.getName(Write.RegisterID)
<< ", Latency=" << Write.Latency
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
});
}
if (MCDesc.hasOptionalDef()) {
// Always assume that the optional definition is the last operand of the
// MCInst sequence.
const MCOperand &Op = MCI.getOperand(MCI.getNumOperands() - 1);
if (i == MCI.getNumOperands() || !Op.isReg()) {
std::string Message =
"expected a register operand for an optional definition. Instruction "
"has not been correctly analyzed.";
return make_error<InstructionError<MCInst>>(Message, MCI);
}
WriteDescriptor &Write = ID.Writes[TotalDefs - 1];
Write.OpIndex = MCI.getNumOperands() - 1;
// Assign a default latency for this write.
Write.Latency = ID.MaxLatency;
Write.SClassOrWriteResourceID = 0;
Write.IsOptionalDef = true;
}
return ErrorSuccess();
}
Error InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
unsigned SchedClassID) {
const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
unsigned NumExplicitDefs = MCDesc.getNumDefs();
// Skip explicit definitions.
unsigned i = 0;
for (; i < MCI.getNumOperands() && NumExplicitDefs; ++i) {
const MCOperand &Op = MCI.getOperand(i);
if (Op.isReg())
NumExplicitDefs--;
}
if (NumExplicitDefs) {
return make_error<InstructionError<MCInst>>(
"Expected more register operand definitions.", MCI);
}
unsigned NumExplicitUses = MCI.getNumOperands() - i;
unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
if (MCDesc.hasOptionalDef()) {
assert(NumExplicitUses);
NumExplicitUses--;
}
unsigned TotalUses = NumExplicitUses + NumImplicitUses;
if (!TotalUses)
return ErrorSuccess();
ID.Reads.resize(TotalUses);
for (unsigned CurrentUse = 0; CurrentUse < NumExplicitUses; ++CurrentUse) {
ReadDescriptor &Read = ID.Reads[CurrentUse];
Read.OpIndex = i + CurrentUse;
Read.UseIndex = CurrentUse;
Read.SchedClassID = SchedClassID;
LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
<< ", UseIndex=" << Read.UseIndex << '\n');
}
for (unsigned CurrentUse = 0; CurrentUse < NumImplicitUses; ++CurrentUse) {
ReadDescriptor &Read = ID.Reads[NumExplicitUses + CurrentUse];
Read.OpIndex = ~CurrentUse;
Read.UseIndex = NumExplicitUses + CurrentUse;
Read.RegisterID = MCDesc.getImplicitUses()[CurrentUse];
Read.SchedClassID = SchedClassID;
LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex << ", RegisterID="
<< MRI.getName(Read.RegisterID) << '\n');
}
return ErrorSuccess();
}
Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
const MCInst &MCI) const {
if (ID.NumMicroOps != 0)
return ErrorSuccess();
bool UsesMemory = ID.MayLoad || ID.MayStore;
bool UsesBuffers = !ID.Buffers.empty();
bool UsesResources = !ID.Resources.empty();
if (!UsesMemory && !UsesBuffers && !UsesResources)
return ErrorSuccess();
StringRef Message;
if (UsesMemory) {
Message = "found an inconsistent instruction that decodes "
"into zero opcodes and that consumes load/store "
"unit resources.";
} else {
Message = "found an inconsistent instruction that decodes "
"to zero opcodes and that consumes scheduler "
"resources.";
}
return make_error<InstructionError<MCInst>>(Message, MCI);
}
Expected<const InstrDesc &>
InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
assert(STI.getSchedModel().hasInstrSchedModel() &&
"Itineraries are not yet supported!");
// Obtain the instruction descriptor from the opcode.
unsigned short Opcode = MCI.getOpcode();
const MCInstrDesc &MCDesc = MCII.get(Opcode);
const MCSchedModel &SM = STI.getSchedModel();
// Then obtain the scheduling class information from the instruction.
unsigned SchedClassID = MCDesc.getSchedClass();
unsigned CPUID = SM.getProcessorID();
// Try to solve variant scheduling classes.
if (SchedClassID) {
while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);
if (!SchedClassID) {
return make_error<InstructionError<MCInst>>(
"unable to resolve scheduling class for write variant.", MCI);
}
}
// Check if this instruction is supported. Otherwise, report an error.
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
return make_error<InstructionError<MCInst>>(
"found an unsupported instruction in the input assembly sequence.",
MCI);
}
// Create a new empty descriptor.
std::unique_ptr<InstrDesc> ID = llvm::make_unique<InstrDesc>();
ID->NumMicroOps = SCDesc.NumMicroOps;
if (MCDesc.isCall()) {
// We don't correctly model calls.
WithColor::warning() << "found a call in the input assembly sequence.\n";
WithColor::note() << "call instructions are not correctly modeled. "
<< "Assume a latency of 100cy.\n";
}
if (MCDesc.isReturn()) {
WithColor::warning() << "found a return instruction in the input"
<< " assembly sequence.\n";
WithColor::note() << "program counter updates are ignored.\n";
}
ID->MayLoad = MCDesc.mayLoad();
ID->MayStore = MCDesc.mayStore();
ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
computeMaxLatency(*ID, MCDesc, SCDesc, STI);
if (auto Err = populateWrites(*ID, MCI, SchedClassID))
return std::move(Err);
if (auto Err = populateReads(*ID, MCI, SchedClassID))
return std::move(Err);
LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
// Sanity check on the instruction descriptor.
if (Error Err = verifyInstrDesc(*ID, MCI))
return std::move(Err);
// Now add the new descriptor.
SchedClassID = MCDesc.getSchedClass();
if (!SM.getSchedClassDesc(SchedClassID)->isVariant()) {
Descriptors[MCI.getOpcode()] = std::move(ID);
return *Descriptors[MCI.getOpcode()];
}
VariantDescriptors[&MCI] = std::move(ID);
return *VariantDescriptors[&MCI];
}
Expected<const InstrDesc &>
InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
return *Descriptors[MCI.getOpcode()];
if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
return *VariantDescriptors[&MCI];
return createInstrDescImpl(MCI);
}
Expected<std::unique_ptr<Instruction>>
InstrBuilder::createInstruction(const MCInst &MCI) {
Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
if (!DescOrErr)
return DescOrErr.takeError();
const InstrDesc &D = *DescOrErr;
std::unique_ptr<Instruction> NewIS = llvm::make_unique<Instruction>(D);
// Check if this is a dependency breaking instruction.
APInt Mask;
unsigned ProcID = STI.getSchedModel().getProcessorID();
bool IsZeroIdiom = MCIA.isZeroIdiom(MCI, Mask, ProcID);
bool IsDepBreaking =
IsZeroIdiom || MCIA.isDependencyBreaking(MCI, Mask, ProcID);
if (MCIA.isOptimizableRegisterMove(MCI, ProcID))
NewIS->setOptimizableMove();
// Initialize Reads first.
for (const ReadDescriptor &RD : D.Reads) {
int RegID = -1;
if (!RD.isImplicitRead()) {
// explicit read.
const MCOperand &Op = MCI.getOperand(RD.OpIndex);
// Skip non-register operands.
if (!Op.isReg())
continue;
RegID = Op.getReg();
} else {
// Implicit read.
RegID = RD.RegisterID;
}
// Skip invalid register operands.
if (!RegID)
continue;
// Okay, this is a register operand. Create a ReadState for it.
assert(RegID > 0 && "Invalid register ID found!");
auto RS = llvm::make_unique<ReadState>(RD, RegID);
if (IsDepBreaking) {
// A mask of all zeroes means: explicit input operands are not
// independent.
if (Mask.isNullValue()) {
if (!RD.isImplicitRead())
RS->setIndependentFromDef();
} else {
// Check if this register operand is independent according to `Mask`.
// Note that Mask may not have enough bits to describe all explicit and
// implicit input operands. If this register operand doesn't have a
// corresponding bit in Mask, then conservatively assume that it is
// dependent.
if (Mask.getBitWidth() > RD.UseIndex) {
// Okay. This map describe register use `RD.UseIndex`.
if (Mask[RD.UseIndex])
RS->setIndependentFromDef();
}
}
}
NewIS->getUses().emplace_back(std::move(RS));
}
// Early exit if there are no writes.
if (D.Writes.empty())
return std::move(NewIS);
// Track register writes that implicitly clear the upper portion of the
// underlying super-registers using an APInt.
APInt WriteMask(D.Writes.size(), 0);
// Now query the MCInstrAnalysis object to obtain information about which
// register writes implicitly clear the upper portion of a super-register.
MCIA.clearsSuperRegisters(MRI, MCI, WriteMask);
// Initialize writes.
unsigned WriteIndex = 0;
for (const WriteDescriptor &WD : D.Writes) {
unsigned RegID = WD.isImplicitWrite() ? WD.RegisterID
: MCI.getOperand(WD.OpIndex).getReg();
// Check if this is a optional definition that references NoReg.
if (WD.IsOptionalDef && !RegID) {
++WriteIndex;
continue;
}
assert(RegID && "Expected a valid register ID!");
NewIS->getDefs().emplace_back(llvm::make_unique<WriteState>(
WD, RegID, /* ClearsSuperRegs */ WriteMask[WriteIndex],
/* WritesZero */ IsZeroIdiom));
++WriteIndex;
}
return std::move(NewIS);
}
} // namespace mca