1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/lib/Support/StringRef.cpp
Chandler Carruth 82d614a5b1 [ADT] Rewrite the StringRef::find implementation to be simpler, clearer,
and tremendously less reliant on the optimizer to fix things.

The code is always necessarily looking for the entire length of the
string when doing the equality tests in this find implementation, but it
previously was needlessly re-checking the size each time among other
annoyances.

By writing this so simply an ddirectly in terms of memcmp, it also is
about 8x faster in a debug build, which in turn makes FileCheck about 2x
faster in 'ninja check-llvm'. This saves about 8% of the time for
FileCheck-heavy parts of the test suite like the x86 backend tests.

llvm-svn: 247269
2015-09-10 11:17:49 +00:00

525 lines
15 KiB
C++

//===-- StringRef.cpp - Lightweight String References ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/edit_distance.h"
#include <bitset>
using namespace llvm;
// MSVC emits references to this into the translation units which reference it.
#ifndef _MSC_VER
const size_t StringRef::npos;
#endif
static char ascii_tolower(char x) {
if (x >= 'A' && x <= 'Z')
return x - 'A' + 'a';
return x;
}
static char ascii_toupper(char x) {
if (x >= 'a' && x <= 'z')
return x - 'a' + 'A';
return x;
}
static bool ascii_isdigit(char x) {
return x >= '0' && x <= '9';
}
// strncasecmp() is not available on non-POSIX systems, so define an
// alternative function here.
static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
for (size_t I = 0; I < Length; ++I) {
unsigned char LHC = ascii_tolower(LHS[I]);
unsigned char RHC = ascii_tolower(RHS[I]);
if (LHC != RHC)
return LHC < RHC ? -1 : 1;
}
return 0;
}
/// compare_lower - Compare strings, ignoring case.
int StringRef::compare_lower(StringRef RHS) const {
if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
return Res;
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
/// Check if this string starts with the given \p Prefix, ignoring case.
bool StringRef::startswith_lower(StringRef Prefix) const {
return Length >= Prefix.Length &&
ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
}
/// Check if this string ends with the given \p Suffix, ignoring case.
bool StringRef::endswith_lower(StringRef Suffix) const {
return Length >= Suffix.Length &&
ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
}
/// compare_numeric - Compare strings, handle embedded numbers.
int StringRef::compare_numeric(StringRef RHS) const {
for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
// Check for sequences of digits.
if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
// The longer sequence of numbers is considered larger.
// This doesn't really handle prefixed zeros well.
size_t J;
for (J = I + 1; J != E + 1; ++J) {
bool ld = J < Length && ascii_isdigit(Data[J]);
bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
if (ld != rd)
return rd ? -1 : 1;
if (!rd)
break;
}
// The two number sequences have the same length (J-I), just memcmp them.
if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
return Res < 0 ? -1 : 1;
// Identical number sequences, continue search after the numbers.
I = J - 1;
continue;
}
if (Data[I] != RHS.Data[I])
return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
}
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
// Compute the edit distance between the two given strings.
unsigned StringRef::edit_distance(llvm::StringRef Other,
bool AllowReplacements,
unsigned MaxEditDistance) const {
return llvm::ComputeEditDistance(
makeArrayRef(data(), size()),
makeArrayRef(Other.data(), Other.size()),
AllowReplacements, MaxEditDistance);
}
//===----------------------------------------------------------------------===//
// String Operations
//===----------------------------------------------------------------------===//
std::string StringRef::lower() const {
std::string Result(size(), char());
for (size_type i = 0, e = size(); i != e; ++i) {
Result[i] = ascii_tolower(Data[i]);
}
return Result;
}
std::string StringRef::upper() const {
std::string Result(size(), char());
for (size_type i = 0, e = size(); i != e; ++i) {
Result[i] = ascii_toupper(Data[i]);
}
return Result;
}
//===----------------------------------------------------------------------===//
// String Searching
//===----------------------------------------------------------------------===//
/// find - Search for the first string \arg Str in the string.
///
/// \return - The index of the first occurrence of \arg Str, or npos if not
/// found.
size_t StringRef::find(StringRef Str, size_t From) const {
if (From > Length)
return npos;
const char *Needle = Str.data();
size_t N = Str.size();
if (N == 0)
return From;
size_t Size = Length - From;
if (Size < N)
return npos;
const char *Start = Data + From;
const char *Stop = Start + (Size - N + 1);
// For short haystacks or unsupported needles fall back to the naive algorithm
if (Size < 16 || N > 255) {
do {
if (std::memcmp(Start, Needle, N) == 0)
return Start - Data;
++Start;
} while (Start < Stop);
return npos;
}
// Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
uint8_t BadCharSkip[256];
std::memset(BadCharSkip, N, 256);
for (unsigned i = 0; i != N-1; ++i)
BadCharSkip[(uint8_t)Str[i]] = N-1-i;
do {
if (std::memcmp(Start, Needle, N) == 0)
return Start - Data;
// Otherwise skip the appropriate number of bytes.
Start += BadCharSkip[(uint8_t)Start[N-1]];
} while (Start < Stop);
return npos;
}
/// rfind - Search for the last string \arg Str in the string.
///
/// \return - The index of the last occurrence of \arg Str, or npos if not
/// found.
size_t StringRef::rfind(StringRef Str) const {
size_t N = Str.size();
if (N > Length)
return npos;
for (size_t i = Length - N + 1, e = 0; i != e;) {
--i;
if (substr(i, N).equals(Str))
return i;
}
return npos;
}
/// find_first_of - Find the first character in the string that is in \arg
/// Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
/// find_first_not_of - Find the first character in the string that is not
/// \arg C or npos if not found.
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (Data[i] != C)
return i;
return npos;
}
/// find_first_not_of - Find the first character in the string that is not
/// in the string \arg Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (!CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
/// find_last_of - Find the last character in the string that is in \arg C,
/// or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_last_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
/// find_last_not_of - Find the last character in the string that is not
/// \arg C, or npos if not found.
StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (Data[i] != C)
return i;
return npos;
}
/// find_last_not_of - Find the last character in the string that is not in
/// \arg Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0, e = Chars.size(); i != e; ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (!CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
void StringRef::split(SmallVectorImpl<StringRef> &A,
StringRef Separator, int MaxSplit,
bool KeepEmpty) const {
StringRef S = *this;
// Count down from MaxSplit. When MaxSplit is -1, this will just split
// "forever". This doesn't support splitting more than 2^31 times
// intentionally; if we ever want that we can make MaxSplit a 64-bit integer
// but that seems unlikely to be useful.
while (MaxSplit-- != 0) {
size_t Idx = S.find(Separator);
if (Idx == npos)
break;
// Push this split.
if (KeepEmpty || Idx > 0)
A.push_back(S.slice(0, Idx));
// Jump forward.
S = S.slice(Idx + Separator.size(), npos);
}
// Push the tail.
if (KeepEmpty || !S.empty())
A.push_back(S);
}
void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
int MaxSplit, bool KeepEmpty) const {
StringRef S = *this;
// Count down from MaxSplit. When MaxSplit is -1, this will just split
// "forever". This doesn't support splitting more than 2^31 times
// intentionally; if we ever want that we can make MaxSplit a 64-bit integer
// but that seems unlikely to be useful.
while (MaxSplit-- != 0) {
size_t Idx = S.find(Separator);
if (Idx == npos)
break;
// Push this split.
if (KeepEmpty || Idx > 0)
A.push_back(S.slice(0, Idx));
// Jump forward.
S = S.slice(Idx + 1, npos);
}
// Push the tail.
if (KeepEmpty || !S.empty())
A.push_back(S);
}
//===----------------------------------------------------------------------===//
// Helpful Algorithms
//===----------------------------------------------------------------------===//
/// count - Return the number of non-overlapped occurrences of \arg Str in
/// the string.
size_t StringRef::count(StringRef Str) const {
size_t Count = 0;
size_t N = Str.size();
if (N > Length)
return 0;
for (size_t i = 0, e = Length - N + 1; i != e; ++i)
if (substr(i, N).equals(Str))
++Count;
return Count;
}
static unsigned GetAutoSenseRadix(StringRef &Str) {
if (Str.startswith("0x")) {
Str = Str.substr(2);
return 16;
}
if (Str.startswith("0b")) {
Str = Str.substr(2);
return 2;
}
if (Str.startswith("0o")) {
Str = Str.substr(2);
return 8;
}
if (Str.startswith("0"))
return 8;
return 10;
}
/// GetAsUnsignedInteger - Workhorse method that converts a integer character
/// sequence of radix up to 36 to an unsigned long long value.
bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
unsigned long long &Result) {
// Autosense radix if not specified.
if (Radix == 0)
Radix = GetAutoSenseRadix(Str);
// Empty strings (after the radix autosense) are invalid.
if (Str.empty()) return true;
// Parse all the bytes of the string given this radix. Watch for overflow.
Result = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= '0' && Str[0] <= '9')
CharVal = Str[0]-'0';
else if (Str[0] >= 'a' && Str[0] <= 'z')
CharVal = Str[0]-'a'+10;
else if (Str[0] >= 'A' && Str[0] <= 'Z')
CharVal = Str[0]-'A'+10;
else
return true;
// If the parsed value is larger than the integer radix, the string is
// invalid.
if (CharVal >= Radix)
return true;
// Add in this character.
unsigned long long PrevResult = Result;
Result = Result*Radix+CharVal;
// Check for overflow by shifting back and seeing if bits were lost.
if (Result/Radix < PrevResult)
return true;
Str = Str.substr(1);
}
return false;
}
bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
long long &Result) {
unsigned long long ULLVal;
// Handle positive strings first.
if (Str.empty() || Str.front() != '-') {
if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
// Check for value so large it overflows a signed value.
(long long)ULLVal < 0)
return true;
Result = ULLVal;
return false;
}
// Get the positive part of the value.
if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
// Reject values so large they'd overflow as negative signed, but allow
// "-0". This negates the unsigned so that the negative isn't undefined
// on signed overflow.
(long long)-ULLVal > 0)
return true;
Result = -ULLVal;
return false;
}
bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
StringRef Str = *this;
// Autosense radix if not specified.
if (Radix == 0)
Radix = GetAutoSenseRadix(Str);
assert(Radix > 1 && Radix <= 36);
// Empty strings (after the radix autosense) are invalid.
if (Str.empty()) return true;
// Skip leading zeroes. This can be a significant improvement if
// it means we don't need > 64 bits.
while (!Str.empty() && Str.front() == '0')
Str = Str.substr(1);
// If it was nothing but zeroes....
if (Str.empty()) {
Result = APInt(64, 0);
return false;
}
// (Over-)estimate the required number of bits.
unsigned Log2Radix = 0;
while ((1U << Log2Radix) < Radix) Log2Radix++;
bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
unsigned BitWidth = Log2Radix * Str.size();
if (BitWidth < Result.getBitWidth())
BitWidth = Result.getBitWidth(); // don't shrink the result
else if (BitWidth > Result.getBitWidth())
Result = Result.zext(BitWidth);
APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
if (!IsPowerOf2Radix) {
// These must have the same bit-width as Result.
RadixAP = APInt(BitWidth, Radix);
CharAP = APInt(BitWidth, 0);
}
// Parse all the bytes of the string given this radix.
Result = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= '0' && Str[0] <= '9')
CharVal = Str[0]-'0';
else if (Str[0] >= 'a' && Str[0] <= 'z')
CharVal = Str[0]-'a'+10;
else if (Str[0] >= 'A' && Str[0] <= 'Z')
CharVal = Str[0]-'A'+10;
else
return true;
// If the parsed value is larger than the integer radix, the string is
// invalid.
if (CharVal >= Radix)
return true;
// Add in this character.
if (IsPowerOf2Radix) {
Result <<= Log2Radix;
Result |= CharVal;
} else {
Result *= RadixAP;
CharAP = CharVal;
Result += CharAP;
}
Str = Str.substr(1);
}
return false;
}
// Implementation of StringRef hashing.
hash_code llvm::hash_value(StringRef S) {
return hash_combine_range(S.begin(), S.end());
}