mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
Mirror of https://github.com/RPCS3/llvm-mirror
226d4b8ac5
This patch proposes how to deal with RISC-V vector frame objects. The layout of RISC-V vector frame will look like |---------------------------------| | scalar callee-saved registers | |---------------------------------| | scalar local variables | |---------------------------------| | scalar outgoing arguments | |---------------------------------| | RVV local variables && | | RVV outgoing arguments | |---------------------------------| <- end of frame (sp) If there is realignment or variable length array in the stack, we will use frame pointer to access fixed objects and stack pointer to access non-fixed objects. |---------------------------------| <- frame pointer (fp) | scalar callee-saved registers | |---------------------------------| | scalar local variables | |---------------------------------| | ///// realignment ///// | |---------------------------------| | scalar outgoing arguments | |---------------------------------| | RVV local variables && | | RVV outgoing arguments | |---------------------------------| <- end of frame (sp) If there are both realignment and variable length array in the stack, we will use frame pointer to access fixed objects and base pointer to access non-fixed objects. |---------------------------------| <- frame pointer (fp) | scalar callee-saved registers | |---------------------------------| | scalar local variables | |---------------------------------| | ///// realignment ///// | |---------------------------------| <- base pointer (bp) | RVV local variables && | | RVV outgoing arguments | |---------------------------------| | /////////////////////////////// | | variable length array | | /////////////////////////////// | |---------------------------------| <- end of frame (sp) | scalar outgoing arguments | |---------------------------------| In this version, we do not save the addresses of RVV objects in the stack. We access them directly through the polynomial expression (a x VLENB + b). We do not reserve frame pointer when there is any RVV object in the stack. So, we also access the scalar frame objects through the polynomial expression (a x VLENB + b) if the access across RVV stack area. Differential Revision: https://reviews.llvm.org/D94465 |
||
---|---|---|
benchmarks | ||
bindings | ||
cmake | ||
docs | ||
examples | ||
include | ||
lib | ||
projects | ||
resources | ||
runtimes | ||
test | ||
tools | ||
unittests | ||
utils | ||
.clang-format | ||
.clang-tidy | ||
.gitattributes | ||
.gitignore | ||
CMakeLists.txt | ||
CODE_OWNERS.TXT | ||
configure | ||
CREDITS.TXT | ||
LICENSE.TXT | ||
llvm.spec.in | ||
README.txt | ||
RELEASE_TESTERS.TXT |
The LLVM Compiler Infrastructure ================================ This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you are writing a package for LLVM, see docs/Packaging.rst for our suggestions.