1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/lib/Target/AVR/AVRISelDAGToDAG.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

558 lines
17 KiB
C++

//===-- AVRISelDAGToDAG.cpp - A dag to dag inst selector for AVR ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AVR target.
//
//===----------------------------------------------------------------------===//
#include "AVR.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "avr-isel"
namespace llvm {
/// Lowers LLVM IR (in DAG form) to AVR MC instructions (in DAG form).
class AVRDAGToDAGISel : public SelectionDAGISel {
public:
AVRDAGToDAGISel(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel), Subtarget(nullptr) {}
StringRef getPassName() const override {
return "AVR DAG->DAG Instruction Selection";
}
bool runOnMachineFunction(MachineFunction &MF) override;
bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp);
bool selectIndexedLoad(SDNode *N);
unsigned selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT);
bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintCode,
std::vector<SDValue> &OutOps) override;
// Include the pieces autogenerated from the target description.
#include "AVRGenDAGISel.inc"
private:
void Select(SDNode *N) override;
bool trySelect(SDNode *N);
template <unsigned NodeType> bool select(SDNode *N);
bool selectMultiplication(SDNode *N);
const AVRSubtarget *Subtarget;
};
bool AVRDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<AVRSubtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
bool AVRDAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Disp) {
SDLoc dl(Op);
auto DL = CurDAG->getDataLayout();
MVT PtrVT = getTargetLowering()->getPointerTy(DL);
// if the address is a frame index get the TargetFrameIndex.
if (const FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), PtrVT);
Disp = CurDAG->getTargetConstant(0, dl, MVT::i8);
return true;
}
// Match simple Reg + uimm6 operands.
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
!CurDAG->isBaseWithConstantOffset(N)) {
return false;
}
if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
// Convert negative offsets into positives ones.
if (N.getOpcode() == ISD::SUB) {
RHSC = -RHSC;
}
// <#Frame index + const>
// Allow folding offsets bigger than 63 so the frame pointer can be used
// directly instead of copying it around by adjusting and restoring it for
// each access.
if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, PtrVT);
Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i16);
return true;
}
// The value type of the memory instruction determines what is the maximum
// offset allowed.
MVT VT = cast<MemSDNode>(Op)->getMemoryVT().getSimpleVT();
// We only accept offsets that fit in 6 bits (unsigned).
if (isUInt<6>(RHSC) && (VT == MVT::i8 || VT == MVT::i16)) {
Base = N.getOperand(0);
Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i8);
return true;
}
}
return false;
}
bool AVRDAGToDAGISel::selectIndexedLoad(SDNode *N) {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
MVT VT = LD->getMemoryVT().getSimpleVT();
auto PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
// We only care if this load uses a POSTINC or PREDEC mode.
if ((LD->getExtensionType() != ISD::NON_EXTLOAD) ||
(AM != ISD::POST_INC && AM != ISD::PRE_DEC)) {
return false;
}
unsigned Opcode = 0;
bool isPre = (AM == ISD::PRE_DEC);
int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();
switch (VT.SimpleTy) {
case MVT::i8: {
if ((!isPre && Offs != 1) || (isPre && Offs != -1)) {
return false;
}
Opcode = (isPre) ? AVR::LDRdPtrPd : AVR::LDRdPtrPi;
break;
}
case MVT::i16: {
if ((!isPre && Offs != 2) || (isPre && Offs != -2)) {
return false;
}
Opcode = (isPre) ? AVR::LDWRdPtrPd : AVR::LDWRdPtrPi;
break;
}
default:
return false;
}
SDNode *ResNode = CurDAG->getMachineNode(Opcode, SDLoc(N), VT,
PtrVT, MVT::Other,
LD->getBasePtr(), LD->getChain());
ReplaceUses(N, ResNode);
CurDAG->RemoveDeadNode(N);
return true;
}
unsigned AVRDAGToDAGISel::selectIndexedProgMemLoad(const LoadSDNode *LD,
MVT VT) {
ISD::MemIndexedMode AM = LD->getAddressingMode();
// Progmem indexed loads only work in POSTINC mode.
if (LD->getExtensionType() != ISD::NON_EXTLOAD || AM != ISD::POST_INC) {
return 0;
}
unsigned Opcode = 0;
int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();
switch (VT.SimpleTy) {
case MVT::i8: {
if (Offs != 1) {
return 0;
}
Opcode = AVR::LPMRdZPi;
break;
}
case MVT::i16: {
if (Offs != 2) {
return 0;
}
Opcode = AVR::LPMWRdZPi;
break;
}
default:
return 0;
}
return Opcode;
}
bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintCode,
std::vector<SDValue> &OutOps) {
assert((ConstraintCode == InlineAsm::Constraint_m ||
ConstraintCode == InlineAsm::Constraint_Q) &&
"Unexpected asm memory constraint");
MachineRegisterInfo &RI = MF->getRegInfo();
const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
const TargetLowering &TL = *STI.getTargetLowering();
SDLoc dl(Op);
auto DL = CurDAG->getDataLayout();
const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);
// If address operand is of PTRDISPREGS class, all is OK, then.
if (RegNode &&
RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) {
OutOps.push_back(Op);
return false;
}
if (Op->getOpcode() == ISD::FrameIndex) {
SDValue Base, Disp;
if (SelectAddr(Op.getNode(), Op, Base, Disp)) {
OutOps.push_back(Base);
OutOps.push_back(Disp);
return false;
}
return true;
}
// If Op is add 'register, immediate' and
// register is either virtual register or register of PTRDISPREGSRegClass
if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) {
SDValue CopyFromRegOp = Op->getOperand(0);
SDValue ImmOp = Op->getOperand(1);
ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);
unsigned Reg;
bool CanHandleRegImmOpt = true;
CanHandleRegImmOpt &= ImmNode != 0;
CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;
if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) {
RegisterSDNode *RegNode =
cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
Reg = RegNode->getReg();
CanHandleRegImmOpt &= (TargetRegisterInfo::isVirtualRegister(Reg) ||
AVR::PTRDISPREGSRegClass.contains(Reg));
} else {
CanHandleRegImmOpt = false;
}
// If we detect proper case - correct virtual register class
// if needed and go to another inlineasm operand.
if (CanHandleRegImmOpt) {
SDValue Base, Disp;
if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) {
SDLoc dl(CopyFromRegOp);
unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);
SDValue CopyToReg =
CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp);
SDValue NewCopyFromRegOp =
CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));
Base = NewCopyFromRegOp;
} else {
Base = CopyFromRegOp;
}
if (ImmNode->getValueType(0) != MVT::i8) {
Disp = CurDAG->getTargetConstant(ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8);
} else {
Disp = ImmOp;
}
OutOps.push_back(Base);
OutOps.push_back(Disp);
return false;
}
}
// More generic case.
// Create chain that puts Op into pointer register
// and return that register.
unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);
SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
SDValue CopyFromReg =
CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));
OutOps.push_back(CopyFromReg);
return false;
}
template <> bool AVRDAGToDAGISel::select<ISD::FrameIndex>(SDNode *N) {
auto DL = CurDAG->getDataLayout();
// Convert the frameindex into a temp instruction that will hold the
// effective address of the final stack slot.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI =
CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy(DL));
CurDAG->SelectNodeTo(N, AVR::FRMIDX,
getTargetLowering()->getPointerTy(DL), TFI,
CurDAG->getTargetConstant(0, SDLoc(N), MVT::i16));
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::STORE>(SDNode *N) {
// Use the STD{W}SPQRr pseudo instruction when passing arguments through
// the stack on function calls for further expansion during the PEI phase.
const StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue BasePtr = ST->getBasePtr();
// Early exit when the base pointer is a frame index node or a constant.
if (isa<FrameIndexSDNode>(BasePtr) || isa<ConstantSDNode>(BasePtr) ||
BasePtr.isUndef()) {
return false;
}
const RegisterSDNode *RN = dyn_cast<RegisterSDNode>(BasePtr.getOperand(0));
// Only stores where SP is the base pointer are valid.
if (!RN || (RN->getReg() != AVR::SP)) {
return false;
}
int CST = (int)cast<ConstantSDNode>(BasePtr.getOperand(1))->getZExtValue();
SDValue Chain = ST->getChain();
EVT VT = ST->getValue().getValueType();
SDLoc DL(N);
SDValue Offset = CurDAG->getTargetConstant(CST, DL, MVT::i16);
SDValue Ops[] = {BasePtr.getOperand(0), Offset, ST->getValue(), Chain};
unsigned Opc = (VT == MVT::i16) ? AVR::STDWSPQRr : AVR::STDSPQRr;
SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, MVT::Other, Ops);
// Transfer memory operands.
CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {ST->getMemOperand()});
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::LOAD>(SDNode *N) {
const LoadSDNode *LD = cast<LoadSDNode>(N);
if (!AVR::isProgramMemoryAccess(LD)) {
// Check if the opcode can be converted into an indexed load.
return selectIndexedLoad(N);
}
assert(Subtarget->hasLPM() && "cannot load from program memory on this mcu");
// This is a flash memory load, move the pointer into R31R30 and emit
// the lpm instruction.
MVT VT = LD->getMemoryVT().getSimpleVT();
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDNode *ResNode;
SDLoc DL(N);
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Ptr, SDValue());
Ptr = CurDAG->getCopyFromReg(Chain, DL, AVR::R31R30, MVT::i16,
Chain.getValue(1));
SDValue RegZ = CurDAG->getRegister(AVR::R31R30, MVT::i16);
// Check if the opcode can be converted into an indexed load.
if (unsigned LPMOpc = selectIndexedProgMemLoad(LD, VT)) {
// It is legal to fold the load into an indexed load.
ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr,
RegZ);
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
} else {
// Selecting an indexed load is not legal, fallback to a normal load.
switch (VT.SimpleTy) {
case MVT::i8:
ResNode = CurDAG->getMachineNode(AVR::LPMRdZ, DL, MVT::i8, MVT::Other,
Ptr, RegZ);
break;
case MVT::i16:
ResNode = CurDAG->getMachineNode(AVR::LPMWRdZ, DL, MVT::i16,
MVT::Other, Ptr, RegZ);
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
break;
default:
llvm_unreachable("Unsupported VT!");
}
}
// Transfer memory operands.
CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {LD->getMemOperand()});
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<AVRISD::CALL>(SDNode *N) {
SDValue InFlag;
SDValue Chain = N->getOperand(0);
SDValue Callee = N->getOperand(1);
unsigned LastOpNum = N->getNumOperands() - 1;
// Direct calls are autogenerated.
unsigned Op = Callee.getOpcode();
if (Op == ISD::TargetGlobalAddress || Op == ISD::TargetExternalSymbol) {
return false;
}
// Skip the incoming flag if present
if (N->getOperand(LastOpNum).getValueType() == MVT::Glue) {
--LastOpNum;
}
SDLoc DL(N);
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Callee, InFlag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(CurDAG->getRegister(AVR::R31R30, MVT::i16));
// Map all operands into the new node.
for (unsigned i = 2, e = LastOpNum + 1; i != e; ++i) {
Ops.push_back(N->getOperand(i));
}
Ops.push_back(Chain);
Ops.push_back(Chain.getValue(1));
SDNode *ResNode =
CurDAG->getMachineNode(AVR::ICALL, DL, MVT::Other, MVT::Glue, Ops);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::BRIND>(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue JmpAddr = N->getOperand(1);
SDLoc DL(N);
// Move the destination address of the indirect branch into R31R30.
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, JmpAddr);
SDNode *ResNode = CurDAG->getMachineNode(AVR::IJMP, DL, MVT::Other, Chain);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
CurDAG->RemoveDeadNode(N);
return true;
}
bool AVRDAGToDAGISel::selectMultiplication(llvm::SDNode *N) {
SDLoc DL(N);
MVT Type = N->getSimpleValueType(0);
assert(Type == MVT::i8 && "unexpected value type");
bool isSigned = N->getOpcode() == ISD::SMUL_LOHI;
unsigned MachineOp = isSigned ? AVR::MULSRdRr : AVR::MULRdRr;
SDValue Lhs = N->getOperand(0);
SDValue Rhs = N->getOperand(1);
SDNode *Mul = CurDAG->getMachineNode(MachineOp, DL, MVT::Glue, Lhs, Rhs);
SDValue InChain = CurDAG->getEntryNode();
SDValue InGlue = SDValue(Mul, 0);
// Copy the low half of the result, if it is needed.
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo =
CurDAG->getCopyFromReg(InChain, DL, AVR::R0, Type, InGlue);
ReplaceUses(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// Copy the high half of the result, if it is needed.
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi =
CurDAG->getCopyFromReg(InChain, DL, AVR::R1, Type, InGlue);
ReplaceUses(SDValue(N, 1), CopyFromHi);
InChain = CopyFromHi.getValue(1);
InGlue = CopyFromHi.getValue(2);
}
CurDAG->RemoveDeadNode(N);
// We need to clear R1. This is currently done (dirtily)
// using a custom inserter.
return true;
}
void AVRDAGToDAGISel::Select(SDNode *N) {
// If we have a custom node, we already have selected!
if (N->isMachineOpcode()) {
LLVM_DEBUG(errs() << "== "; N->dump(CurDAG); errs() << "\n");
N->setNodeId(-1);
return;
}
// See if subclasses can handle this node.
if (trySelect(N))
return;
// Select the default instruction
SelectCode(N);
}
bool AVRDAGToDAGISel::trySelect(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDLoc DL(N);
switch (Opcode) {
// Nodes we fully handle.
case ISD::FrameIndex: return select<ISD::FrameIndex>(N);
case ISD::BRIND: return select<ISD::BRIND>(N);
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: return selectMultiplication(N);
// Nodes we handle partially. Other cases are autogenerated
case ISD::STORE: return select<ISD::STORE>(N);
case ISD::LOAD: return select<ISD::LOAD>(N);
case AVRISD::CALL: return select<AVRISD::CALL>(N);
default: return false;
}
}
FunctionPass *createAVRISelDag(AVRTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new AVRDAGToDAGISel(TM, OptLevel);
}
} // end of namespace llvm